Search
  • Papers


The Use of an Analytic Prolongation Technique for the Solution of the Satellite Problem of Celestial Mechanics

A. Fominov

Transactions of IAA RAS, issue 20, 477–480 (2009)

Keywords: радиоинтерферометрия со сверхдлинными базами, метод аналитического продолжения, прогнозирование движения спутников, разложение ускорений в ряды Тейлора по степеням времени, методы численного интегрирования, точность вычисления на заданном шаге, переменное количество производных, неучтенные члены в рядах Тейлора, спутник вращающейся вокруг неподвижной оси несферической планеты

Abstract

The analytic prolongation technique is used as the method of satellite motion prediction. This technique is based on the expansion of the satellite accelerations (right parts of the motion equations) in Taylor's series with time as independent variable. Algorithm of this technique is very complicated in comparison with the numerical methods of integration, but it ensures 1) the highest computing accuracy for given step, 2) the possibility to operate with variable derivatives in number, 3) the exact valuation of truncation error. The motion of a satellite around nonspherical planet is considered in assumption that a planet is revolving on its axis. The possible version of realization of analytic prolongation technique is described to the solution of given problem.

Citation

Text
BibTeX
RIS
A. Fominov. The Use of an Analytic Prolongation Technique for the Solution of the Satellite Problem of Celestial Mechanics // Transactions of IAA RAS. — 2009. — Issue 20. — P. 477–480. @article{fominov2009, abstract = {The analytic prolongation technique is used as the method of satellite motion prediction. This technique is based on the expansion of the satellite accelerations (right parts of the motion equations) in Taylor's series with time as independent variable. Algorithm of this technique is very complicated in comparison with the numerical methods of integration, but it ensures 1) the highest computing accuracy for given step, 2) the possibility to operate with variable derivatives in number, 3) the exact valuation of truncation error. The motion of a satellite around nonspherical planet is considered in assumption that a planet is revolving on its axis. The possible version of realization of analytic prolongation technique is described to the solution of given problem.}, author = {A. Fominov}, issue = {20}, journal = {Transactions of IAA RAS}, keyword = {радиоинтерферометрия со сверхдлинными базами, метод аналитического продолжения, прогнозирование движения спутников, разложение ускорений в ряды Тейлора по степеням времени, методы численного интегрирования, точность вычисления на заданном шаге, переменное количество производных, неучтенные члены в рядах Тейлора, спутник вращающейся вокруг неподвижной оси несферической планеты}, pages = {477--480}, title = {The Use of an Analytic Prolongation Technique for the Solution of the Satellite Problem of Celestial Mechanics}, url = {http://iaaras.ru/en/library/paper/680/}, year = {2009} } TY - JOUR TI - The Use of an Analytic Prolongation Technique for the Solution of the Satellite Problem of Celestial Mechanics AU - Fominov, A. PY - 2009 T2 - Transactions of IAA RAS IS - 20 SP - 477 AB - The analytic prolongation technique is used as the method of satellite motion prediction. This technique is based on the expansion of the satellite accelerations (right parts of the motion equations) in Taylor's series with time as independent variable. Algorithm of this technique is very complicated in comparison with the numerical methods of integration, but it ensures 1) the highest computing accuracy for given step, 2) the possibility to operate with variable derivatives in number, 3) the exact valuation of truncation error. The motion of a satellite around nonspherical planet is considered in assumption that a planet is revolving on its axis. The possible version of realization of analytic prolongation technique is described to the solution of given problem. UR - http://iaaras.ru/en/library/paper/680/ ER -