Поиск по публикациям

Экспериментальные исследования сверхширокополосного аналого-цифрового преобразователя для радиоастрономической аппаратуры

С. А. Гренков, А. В. Крохалев, Л. В. Федотов

Труды ИПА РАН, вып. 58, 17–23 (2021)

DOI: 10.32876/ApplAstron.58.17-23

Ключевые слова: радиотелескоп, АЦП, цифровая обработка сигналов

Информация о статье Текст статьи

Аннотация

Современные системы приема и преобразования радиоастрономических сигналов на радиотелескопах развиваются в сторону расширения рабочей полосы частот и максимального использования цифровых методов обработки сигналов. Использование в таких системах сверхширокополосных аналого-цифровых преобразователей (АЦП) позволяет отказаться от большей части аналоговых устройств в сигнальном тракте радиотелескопа, исключив их известные недостатки. Прямое цифровое преобразование сигналов в диапазонах частот L, C, S и Х, которые часто используются в радиоастрономических наблюдениях, а также в диапазоне 2–14 ГГц в соответствии с концепцией VGOS, требует АЦП с рабочей частотой дискретизации сигналов порядка 20 ГГц и выше. Одним из коммерчески доступных АЦП, способных работать с такой тактовой частотой, является микросхема HMCAD5831 фирмы Hittite Microwave. Поиск путей использования таких АЦП для создания цифровых радиоастрономических систем требует экспериментального исследования характеристик указанной микросхемы с учетом специфики преобразования широкополосных радиоастрономических сигналов. Рассмотрены параметры, структура и особенности работы указанной микросхемы. Для исследования сверхширокополосного АЦП была разработана и изготовлена экспериментальная установка на основе отладочной платы с HMCAD5831 и платы цифровой обработки сигналов на программируемой логической интегральной схеме (ПЛИС) ХС7К325Т. Дано описание методики исследования основных характеристик сверхширокополосного АЦП: характеристики преобразования сигнала, амплитудно-частотной характеристики, дифференциальной нелинейности преобразования. Приведены результаты измерения указанных характеристик, а также спектры гармонического и широкополосного шумового сигналов после их преобразования в исследуемом АЦП. Показано, что существенное значение для обеспечения корректной работы сверхширокополосного АЦП имеют точность установки и стабильность опорных напряжений, а также взаимная синхронизация портов, на которые поступают выходные данные АЦП. С этим связаны основные трудности использования микросхемы HMCAD5831 в радиоастрономической аппаратуре. Исследования показали, что АЦП HMCAD5831LP9BE обеспечивает стабильное и точное преобразование широкополосных сигналов в 3-разрядные коды с тактовой частотой дискретизации до 16 ГГц. Увеличение тактовой частоты до 20 ГГц и более требует специального проектирования, а также тщательного и высокоточного изготовления печатной платы для микросхемы АЦП и всех сопутствующих устройств. АЦП этого класса можно использовать в радиоастрономии. Как гармонические, так и шумовые сигналы могут быть успешно оцифрованы, введены в ПЛИС и методами многопотоковой обработки данных преобразованы в нужную форму, что вполне возможно на базе ресурсов современных ПЛИС. Основной трудностью при этом будет недостаточная доступность микросхем сверхвысокочастотных АЦП даже в коммерческом исполнении в условиях торговых санкций.

Цитирование

Текст
Бибтех
RIS
С. А. Гренков, А. В. Крохалев, Л. В. Федотов. Экспериментальные исследования сверхширокополосного аналого-цифрового преобразователя для радиоастрономической аппаратуры // Труды ИПА РАН. — 2021. — Вып. 58. — С. 17–23. @article{grenkov2021, abstract = {Современные системы приема и преобразования радиоастрономических сигналов на радиотелескопах развиваются в сторону расширения рабочей полосы частот и максимального использования цифровых методов обработки сигналов. Использование в таких системах сверхширокополосных аналого-цифровых преобразователей (АЦП) позволяет отказаться от большей части аналоговых устройств в сигнальном тракте радиотелескопа, исключив их известные недостатки. Прямое цифровое преобразование сигналов в диапазонах частот L, C, S и Х, которые часто используются в радиоастрономических наблюдениях, а также в диапазоне 2–14 ГГц в соответствии с концепцией VGOS, требует АЦП с рабочей частотой дискретизации сигналов порядка 20 ГГц и выше. Одним из коммерчески доступных АЦП, способных работать с такой тактовой частотой, является микросхема HMCAD5831 фирмы Hittite Microwave. Поиск путей использования таких АЦП для создания цифровых радиоастрономических систем требует экспериментального исследования характеристик указанной микросхемы с учетом специфики преобразования широкополосных радиоастрономических сигналов. Рассмотрены параметры, структура и особенности работы указанной микросхемы. Для исследования сверхширокополосного АЦП была разработана и изготовлена экспериментальная установка на основе отладочной платы с HMCAD5831 и платы цифровой обработки сигналов на программируемой логической интегральной схеме (ПЛИС) ХС7К325Т. Дано описание методики исследования основных характеристик сверхширокополосного АЦП: характеристики преобразования сигнала, амплитудно-частотной характеристики, дифференциальной нелинейности преобразования. Приведены результаты измерения указанных характеристик, а также спектры гармонического и широкополосного шумового сигналов после их преобразования в исследуемом АЦП. Показано, что существенное значение для обеспечения корректной работы сверхширокополосного АЦП имеют точность установки и стабильность опорных напряжений, а также взаимная синхронизация портов, на которые поступают выходные данные АЦП. С этим связаны основные трудности использования микросхемы HMCAD5831 в радиоастрономической аппаратуре. Исследования показали, что АЦП HMCAD5831LP9BE обеспечивает стабильное и точное преобразование широкополосных сигналов в 3-разрядные коды с тактовой частотой дискретизации до 16 ГГц. Увеличение тактовой частоты до 20 ГГц и более требует специального проектирования, а также тщательного и высокоточного изготовления печатной платы для микросхемы АЦП и всех сопутствующих устройств. АЦП этого класса можно использовать в радиоастрономии. Как гармонические, так и шумовые сигналы могут быть успешно оцифрованы, введены в ПЛИС и методами многопотоковой обработки данных преобразованы в нужную форму, что вполне возможно на базе ресурсов современных ПЛИС. Основной трудностью при этом будет недостаточная доступность микросхем сверхвысокочастотных АЦП даже в коммерческом исполнении в условиях торговых санкций.}, author = {С.~А. Гренков and А.~В. Крохалев and Л.~В. Федотов}, doi = {10.32876/ApplAstron.58.17-23}, issue = {58}, journal = {Труды ИПА РАН}, keyword = {радиотелескоп, АЦП, цифровая обработка сигналов}, note = {russian}, pages = {17--23}, title = {Экспериментальные исследования сверхширокополосного аналого-цифрового преобразователя для радиоастрономической аппаратуры}, url = {http://iaaras.ru/library/paper/2093/}, year = {2021} } TY - JOUR TI - Экспериментальные исследования сверхширокополосного аналого-цифрового преобразователя для радиоастрономической аппаратуры AU - Гренков, С. А. AU - Крохалев, А. В. AU - Федотов, Л. В. PY - 2021 T2 - Труды ИПА РАН IS - 58 SP - 17 AB - Современные системы приема и преобразования радиоастрономических сигналов на радиотелескопах развиваются в сторону расширения рабочей полосы частот и максимального использования цифровых методов обработки сигналов. Использование в таких системах сверхширокополосных аналого-цифровых преобразователей (АЦП) позволяет отказаться от большей части аналоговых устройств в сигнальном тракте радиотелескопа, исключив их известные недостатки. Прямое цифровое преобразование сигналов в диапазонах частот L, C, S и Х, которые часто используются в радиоастрономических наблюдениях, а также в диапазоне 2–14 ГГц в соответствии с концепцией VGOS, требует АЦП с рабочей частотой дискретизации сигналов порядка 20 ГГц и выше. Одним из коммерчески доступных АЦП, способных работать с такой тактовой частотой, является микросхема HMCAD5831 фирмы Hittite Microwave. Поиск путей использования таких АЦП для создания цифровых радиоастрономических систем требует экспериментального исследования характеристик указанной микросхемы с учетом специфики преобразования широкополосных радиоастрономических сигналов. Рассмотрены параметры, структура и особенности работы указанной микросхемы. Для исследования сверхширокополосного АЦП была разработана и изготовлена экспериментальная установка на основе отладочной платы с HMCAD5831 и платы цифровой обработки сигналов на программируемой логической интегральной схеме (ПЛИС) ХС7К325Т. Дано описание методики исследования основных характеристик сверхширокополосного АЦП: характеристики преобразования сигнала, амплитудно-частотной характеристики, дифференциальной нелинейности преобразования. Приведены результаты измерения указанных характеристик, а также спектры гармонического и широкополосного шумового сигналов после их преобразования в исследуемом АЦП. Показано, что существенное значение для обеспечения корректной работы сверхширокополосного АЦП имеют точность установки и стабильность опорных напряжений, а также взаимная синхронизация портов, на которые поступают выходные данные АЦП. С этим связаны основные трудности использования микросхемы HMCAD5831 в радиоастрономической аппаратуре. Исследования показали, что АЦП HMCAD5831LP9BE обеспечивает стабильное и точное преобразование широкополосных сигналов в 3-разрядные коды с тактовой частотой дискретизации до 16 ГГц. Увеличение тактовой частоты до 20 ГГц и более требует специального проектирования, а также тщательного и высокоточного изготовления печатной платы для микросхемы АЦП и всех сопутствующих устройств. АЦП этого класса можно использовать в радиоастрономии. Как гармонические, так и шумовые сигналы могут быть успешно оцифрованы, введены в ПЛИС и методами многопотоковой обработки данных преобразованы в нужную форму, что вполне возможно на базе ресурсов современных ПЛИС. Основной трудностью при этом будет недостаточная доступность микросхем сверхвысокочастотных АЦП даже в коммерческом исполнении в условиях торговых санкций. DO - 10.32876/ApplAstron.58.17-23 UR - http://iaaras.ru/library/paper/2093/ ER -