Earth–Moon VLBI project. Modeling of scientific outcome

Sergei L. Kurdubov, Dmitry A. Pavlov, Svetlana M. Mironova, Sergey A. Kaplev

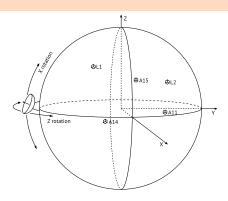
25 декабря 2019 года

Введение и история

- ▶ Лазерная локация Луны Apollo 11+ Luna 17+
- ▶ Первые идеи Лунного РСДБ (Burns 1985,1988)
- ▶ Орбитальное РСДБ VSOP (1997-2003), Spectr-R (2011-)

Базирование на Луне или в Космосе

- Трудности с доставкой и установкой
- ▶ Стабильность орбиты Луны, нет светового давления
- Возможность осуществления быстрой смены радиоисточников


Где располагать

- Видимая сторона Луны:
 - ▶ Прямая передача данных
 - Возможность прямой передачи данных
 - Большая длина базы
- Колокация с лазерным отражаетелем и ГНСС приемником
- Вблизи экватора для максимального охвата радиоисточников

Где располагать

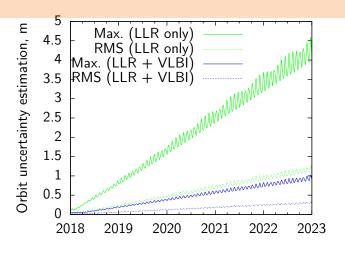
Puc.: Five existing lunar retroreflector panels and the proposed VLBI station. The XY plane and the Z axis are close to lunar equator and rotation axis, respectively. The X axis is directed approximately towards the Earth.

Динамическая модель и эфемериды

- Эфемериды EPM
- Модель вращения включает приливную и вращательную диссипацию, сферическое жидкое ядро, сжатие ядра, влияние Земных приливов.
- Лунная СК определена главными осями инерции, углы Эйлера определяют поворот в инерциальную систему

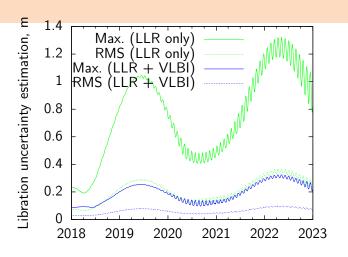
$$R_{L2C}(t) = R_z(\phi(t))R_x(\theta(t))R_z(\psi(t)). \tag{1}$$

Численное моделирование


- ▶ ЛРТ добавлен к наземной РСДБ сети CONT17
- ▶ "Legacy-1" подсеть из 14 станций in Europe, Russia, South Africa, Australia, New Zealand, Brazil, Japan, and Hawaii.
- Всего было смоделировно 24 095 задержек на базе Земля–Луна и обработано совместо с 105 808 настоящими задержками на Земных базах
- ▶ Использовались пакеты ERA-8 и QUASAR.

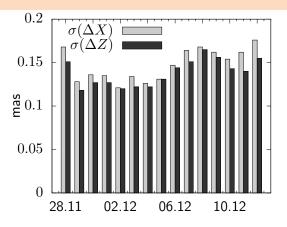
Уточнение параметров Луны

- 1. Dynamical parameters: initial Euler angles of lunar physical libration and their rates; initial GCRS position and velocity of the Moon; initial core angular velocity; undistorted J_2 , C_{32} , S_{32} , S_{33} of the Moon; ratios between undistorted main moments of inertia of the Moon; lunar core flattening and friction coefficient; two Earth tidal delays; GM of the Earth–Moon system.
- 2. Reduction parameters: positions and velocities of LLR stations; selenocentric (PA) positions of the lunar retroreflectors; Love number h_2 of the Moon; 28 specific biases for different time intervals. The selenocentric lunar radio telescope position was determined as well in the solution with 15 days of simulated VLBI observations.



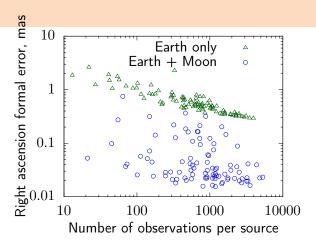
Puc.: Estimation (maximum and RMS) of the uncertainty of the orbital position of the Moon for five years, assuming no observations since 2018, using only LLR data or LLR data with simulated VLBI data

Уточнение параметров Луны



Puc.: Estimation (maximum and RMS) of the uncertainty of the lunar physical libration (measured in maximum discrepancy across the lunar surface) for five years, assuming no observations since 2018, using only LLR data and simulated VLBL data

Параметры Вращения Луны

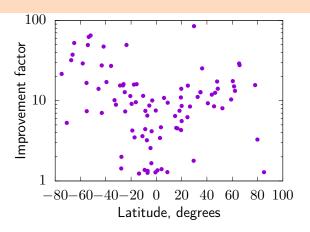


Puc.: Formal errors (1σ) of determined lunar orientation parameters (X and Z rotations) in "CONT17 Legacy-2 with lunar radio telescope" scenario

Уточнение Небесной Системы координат

Puc.: Formal errors (1σ) of determined right ascensions of observed radio sources from CONT "Legacy-1" observations, with and without Earth–Moon VLBI

Уточнение Небесной Системы координат



Puc.: Formal errors (1σ) of determined declinations of observed radio sources from CONT "Legacy-1" observations, with and without Earth–Moon VLBI

Коэффициент уточнения НСК

Puc.: Improvement factor (Earth and Earth–Moon VLBI vs just Earth VLBI) of radio source declination formal error normalized by square root of relative number of observations (as a function of ecliptic latitude).

Тесты ОТО

Таблица: Delay generated by gravity of a body (Δt_G) and by its translational motion (Δt_M)

Body	Baseline, km	Angle	Δt_G	Δt_M
Sun	6 000	grazing ray	169.24 ns	0.0082 ps
Sun	6 000	1 deg	45.33 ns	
Sun	6 000	30 deg	1.47 ns	
Sun	6 000	90 deg	0.40 ns	
Sun	6 000	175 deg	17.25 ps	
Sun	380 000	grazing ray	8 588.24 ns	0.4166 ps
Sun	380 000	1 deg	3 098.72 ns	
Sun	380 000	30 deg	93.59 ns	
Sun	380 000	90 deg	25.02 ns	
Sun	380 000	175 deg	1.11 ns	

Точность орбит ЛНСС

Таблица: Range accuracy of orbit determination example based on ISL and two-way range measurements to the reference points with different uncertainties

Reference points by:	LLR only	LLR and VLBI
RMS (3.5 h measurements)	7.9 cm	2.7 cm
95% CI (3.5 h measurements)	12.9 cm	4.8 cm
Max. (3.5 h measurements)	16.2 cm	8.0 cm
RMS (12 h propagation)	14.8 cm	7.8 cm
95% CI (12 h propagation)	26.5 cm	14.5 cm
Max. (12 h propagation)	43.3 cm	24.4 cm

Заключение

- Моделирование сделано в предположении что квазары имеют достаточно компактные структуры, чтобы получить задержку.
- ▶ Девять дней интенсивных наблюдений на базе Земля—Луна могут улучшить точность Лунно—Земной системы координат в 3—6 раз и точность Лунной СК в 4—10 раз. Точность эфемерид может улучшится от уровня метров до дециметров на 5-и летнем интервале.
- ▶ Точность определения ПВЛ достигает 0.3 мс дуги (2.5мм на поверхности Луны)
- Точность реализации НСК может быть улучшена более чем в 10 раз для более половины РИ, отстоящих от эклиптики.
- Улучшенная ЛНСК может дать двукратное повышение точности орбит спутников будущей ЛНСС.