
Реализация модели орбитально-вращательного движения Луны JPL DE и уточнение параметров по LLR-наблюдениям

Д. А. Павлов ипа ран

Семинар ИПА РАН 14 января 2016

Лунная лазерная локация и эфемериды

Целевые показатели ОКР «Эфемериды»

Программно-аппаратные средства для формирования фундаментальных эфемерид Луны и планет – часть ОКР «Создание средств поддержания и расчета эфемерид Луны и планет для прецизионного эфемеридновременного обеспечения системы ГЛОНАСС». Ожидаемые точностные характеристики заложены в ФЦП «Поддержание, развитие и использование системы ГЛОНАСС на 2012-2020 гг».

Целевой индикатор Q_8 «Относительная погрешность эфемерид тел Солнечной системы»:

$$Q_8 = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma_i^{\text{EPM}}}{\sigma_i^{\text{DE}}}$$

n – число типов наблюдений (LLR – один из типов); $\sigma_{_{i}}$ – СКО представления наблюдений типа i.

Ожидается, что к 2019 г. Q_8 достигнет значения 1.

Цель работы

- Реализация уравнений движения Луны DE430 в эфемеридах EPM;
- Уточнение параметров из обработки LLR-наблюдений;
- Использование наиболее точных моделей и решений для:
 - прецессии/нутации IAU2000/2006 с поправками EOP;
 - смещений пунктов наблюдения;
 - 。 гравитационных потенциалов Земли и Луны;
 - тропосферной задержки сигнала;
- Получение эфемериды Луны, сравнимой с JPL DE430 ($\sigma^{\text{EPM}}/\sigma^{\text{DE}}$ → 1).

История развития лунной модели DE

DE200 (1982)	Твёрдая Луна - ньютоновские и релятивистские ускорения; - ускорение в поле Земли; - ускорение и момент от тел в поле Луны; - момент от взаимодействия J ₂ Земли с полем Луны; - простейшая модель приливных возмущений орбиты с одним параметром задержки.	E. M. Standish et al. <i>Chapter 5: Orbital Ephemerides of the Sun, Moon, and Planets.</i> In: Explanatory Supplement to the Astronomical Almanac (1992)
DE403 (1995) DE405 (1998) DE421 (2008)	Эластичная Луна - возмущения матрицы инерции от земных приливов и вращательной деформации с задержкой; - динамические коэффициенты гравитационного потенциала C20, C22, C21, S21, S22. - модель приливных возмущений орбиты с фиксированными k_{20} , k_{21} , k_{22} , t_0 и определяемыми t_1 , t_2	J. G. Williams et al. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106 (2001). E. M. Standish, J. G. Williams. Chapter 8: Orbital Ephemerides of the Sun, Moon, and Planets (2004). J. G. Williams et al. DE421 Lunar Orbit, Physical Librations, and Surface Coordinates. JPL IOM (2008).
DE430 (2013)	Эластичная Луна с жидким ядром – вклад ядра в матрицу инерции; – момент от трения на границе ядра и коры; – момент, сообщаемый коре из-за сплюснутости ядра; – модель приливных возмущений орбиты с фиксированными k_{20} , k_{21} , k_{22} , t_{00} , t_{10} , t_{20} и определяемыми t_{1R} , t_{2R}	W. M. Folkner et al. <i>The Planetary and Lunar Ephemerides DE430 and DE431</i> . IPN Progress Report 42-196 (2014). J. G. Williams et al. <i>DE430 Lunar Orbit, Physical Librations, and Surface Coordinates</i> . JPL IOM (2013).

Модель орбитального движения Луны (I)

- Релятивистские уравнения движения материальных точек (EIH).
- Возмущения в гравитационном поле Земли. Используется модель на базе решения **EGM2008**, рекомендованная IERS2010, с коэффициентами до 6-й степени.
- Ускорение Земли в гравитационном поле Луны. Используется решение GL660b (результат эксперимента GRAIL) с корректировками (см. далее).
- Ускорение от Земли, Солнца,
 Венеры, Юпитера, Меркурия
 и Марса в гравитационном
 поле Луны.

$$\begin{split} \vec{a}_A &= \sum_{B \neq A} \frac{Gm_B \vec{n}_{BA}}{r_{AB}^2} \\ &+ \frac{1}{c^2} \sum_{B \neq A} \frac{Gm_B \vec{n}_{BA}}{r_{AB}^2} \left[v_A^2 + 2v_B^2 - 4(\vec{v}_A \cdot \vec{v}_B) - \frac{3}{2} (\vec{n}_{AB} \cdot \vec{v}_B)^2 \right. \\ &- 4 \sum_{C \neq A} \frac{Gm_C}{r_{AC}} - \sum_{C \neq B} \frac{Gm_C}{r_{BC}} + \frac{1}{2} ((\vec{x}_B - \vec{x}_A) \cdot \vec{a}_B) \right] \\ &+ \frac{1}{c^2} \sum_{B \neq A} \frac{Gm_B}{r_{AB}^2} \left[\vec{n}_{AB} \cdot (4\vec{v}_A - 3\vec{v}_B) \right] (\vec{v}_A - \vec{v}_B) \\ &+ \frac{7}{2c^2} \sum_{B \neq A} \frac{Gm_B \vec{a}_B}{r_{AB}} + O(c^{-4}) \end{split}$$

$$\frac{\mathbf{f}_{\text{fig-pm}}}{m} = \mu \text{Re} \left[\sum_{n=0}^{n_{\text{max}}} R^n \sum_{m=0}^{n} (\bar{C}_{\text{nm}} - i\bar{S}_{\text{nm}}) \nabla \bar{V}_{\text{nm}}(r, \lambda, \phi) \right]$$
$$\bar{V}_{\text{nm}}(r, \lambda, \phi) = N_{\text{nm}} \frac{\cos m\lambda + i \sin m\lambda}{r^{n+1}} P_n^m(\sin \phi)$$
$$N_{\text{nm}} = \sqrt{\frac{(n-m)!(2n+1)!(2-\delta_{0m})}{(n+m)!}}$$

Table 6.2: Low-degree coefficients of the conventional geopotential model						
Coefficient	Coefficient Value at 2000.0 Reference Rate $/ \text{ yr}^{-1}$ Reference					
$ar{C}_{20}$ (zero-tide) $ar{C}_{30}$ $ar{C}_{40}$	$ \begin{array}{c} -0.48416948 \times 10^{-3} \\ 0.9571612 \times 10^{-6} \\ 0.5399659 \times 10^{-6} \end{array}$	Cheng et al., 2010 EGM2008 EGM2008	$11.6 \times 10^{-12} 4.9 \times 10^{-12} 4.7 \times 10^{-12}$	Nerem et al., 1993 Cheng et al., 1997 Cheng et al., 1997		

Модель орбитального движения Луны (II)

Твердотельные и океанические приливы от Солнца и Луны на Земле возмущают орбиту Луны.

Модель IERS2010: вариации геопотенциала (важна только 2-я степень).

$$\begin{split} \Delta \bar{C}_{\mathrm{nm,E}} - i \Delta \bar{S}_{\mathrm{nm,E}} &= \frac{k_{\mathrm{nm}}}{2n+1} \sum_{j=M,S} \frac{\mu_j}{\mu_E} \left(\frac{R_E}{r_j}\right)^{n+1} \bar{P}_{\mathrm{nm}}(\sin \Phi_j) e^{-im\lambda_j} \\ \Delta \bar{C}_{20}^{(\mathrm{fd})} &= \mathrm{Re} \sum_{f} (A_0 \delta k_f H_f) e^{i\theta_f} \\ \Delta \bar{C}_{21}^{(\mathrm{fd})} - i \Delta \bar{S}_{21}^{(\mathrm{fd})} &= -i \sum_{f} (A_1 \delta k_f H_f) e^{i\theta_f} \\ \Delta \bar{C}_{22}^{(\mathrm{fd})} - i \Delta \bar{S}_{22}^{(\mathrm{fd})} &= \sum_{f} (A_2 \delta k_f H_f) e^{i\theta_f} \\ \Delta \bar{C}_{\mathrm{nm}}^{(\mathrm{ocean})} - i \Delta \bar{S}_{\mathrm{nm}}^{(\mathrm{ocean})} &= \sum_{f} \sum_{+}^{-} (\mathcal{C}_{\mathrm{f,nm}}^{\pm} \mp i \mathcal{S}_{\mathrm{f,nm}}^{\pm}) e^{\pm i\theta_f} \end{split}$$

$$(m = 1, 2).$$

Модель DE430: ускорение с задержками по вращению и орбите

$$\frac{\Delta f}{m} = \frac{3\mu_E}{2} \left(\frac{R_E}{r} \right)^5 \left[\frac{k_{20}}{r_0^{*5}} \left(\left(2z_0^{*2} \mathbf{z} + \rho_0^{*2} \boldsymbol{\rho} \right) - 5 \frac{(zz_0^{*})^2 + \frac{1}{2}(\rho \rho_0)^2}{r^2} \mathbf{r} + r_0^{*2} \mathbf{r} \right) \right] \mathbf{r}^* = R_z (\dot{\theta}_E \tau_{\mathrm{mR}}) \mathbf{r}_{\mathrm{body}} (t - \tau_{\mathrm{mO}}) \\
+ \frac{k_{21}}{r_1^{*5}} \left(2 \left((\boldsymbol{\rho} \cdot \boldsymbol{\rho}_1^*) \mathbf{z}_1^* + zz_1^* \boldsymbol{\rho}_1^* \right) - \frac{10zz_1^* (\boldsymbol{\rho} \cdot \boldsymbol{\rho}_1^*) \mathbf{r}}{r^2} \right) \\
+ \frac{k_{22}}{r_2^{*5}} \left(2 (\boldsymbol{\rho} \cdot \boldsymbol{\rho}_2^*) \boldsymbol{\rho}_2^* - \rho_2^{*2} \boldsymbol{\rho} - 5 \frac{(\boldsymbol{\rho} \cdot \boldsymbol{\rho}_2^*)^2 - \frac{1}{2}(\rho \rho_2^*)^2}{r^2} \mathbf{r} \right) \right]$$

Модель физической либрации Луны (I)

Твёрдая Луна

- Уравнения для эйлеровых углов либрации с наличием внешнего крутящего момента.
- Момент от материальных точек
 Земли, Солнца, Венеры, Меркурия,
 Марса, Юпитера в гравитационном поле Луны.

$$egin{aligned} rac{oldsymbol{N}}{m} &= \sum_{A
eq M} rac{oldsymbol{N}_{ ext{figM-pmA}}}{m} + rac{oldsymbol{N}_{ ext{figM-figE}}}{m} \ &rac{oldsymbol{N}_{ ext{figM-pmA}}}{m} = (oldsymbol{r}_M - oldsymbol{r}_A) imes rac{oldsymbol{f}_{ ext{figM-pmA}}}{m} \end{aligned}$$

Момент от взаимодействия фигуры Земли (только J₂)
 с гравитационным полем Луны

$$R_{L2C}(t) = R_z(\phi(t))R_x(\theta(t))R_z(\psi(t))$$

$$\omega_x = \dot{\phi}\sin\theta\sin\psi + \dot{\theta}\cos\psi$$

$$\omega_y = \dot{\phi}\sin\theta\cos\psi - \dot{\theta}\sin\psi$$

$$\omega_z = \dot{\phi}\cos\theta + \dot{\psi}$$

$$\ddot{\phi} = \frac{\dot{\omega}_x\sin\psi + \dot{\omega}_y\cos\psi + \dot{\theta}(\dot{\psi} - \dot{\phi}\cos\theta)}{\sin\theta}$$

$$\ddot{\theta} = \dot{\omega}_x\cos\psi - \dot{\omega}_y\sin\psi - \dot{\phi}\dot{\psi}\sin\theta$$

$$\ddot{\psi} = \dot{\omega}_z - \ddot{\phi}\cos\theta + \dot{\phi}\dot{\theta}\sin\theta$$

$$\dot{\omega} = \left(\frac{I}{m}\right)^{-1} \left[\frac{N}{m} - \frac{\dot{I}}{m}\omega - \omega \times \left(\frac{I}{m}\omega\right)\right]$$

$$\frac{I}{m} = \frac{2R_M^2 \tilde{J}_2}{2\beta - \gamma + \beta\gamma} \begin{bmatrix} 1 - \beta\gamma & 0 & 0\\ 0 & 1 + \gamma & 0\\ 0 & 0 & 1 + \beta \end{bmatrix}$$

$$\frac{\boldsymbol{N}_{\text{figM-figE}}}{m} = \frac{15\mu_E R_E^2 J_{2E}}{2r_{\text{EM}}^5} \left[\left(1 - 7(\hat{\boldsymbol{r}}_{\text{EM}} \cdot \hat{\boldsymbol{p}})^2 \right) \left(\hat{\boldsymbol{r}}_{\text{EM}} \times \frac{I}{m} \hat{\boldsymbol{r}}_{\text{EM}} \right) + 2(\hat{\boldsymbol{r}}_{\text{EM}} \cdot \hat{\boldsymbol{p}}) \left(\hat{\boldsymbol{r}}_{\text{EM}} \times \frac{I}{m} \hat{\boldsymbol{p}} + \hat{\boldsymbol{p}} \times \frac{I}{m} \hat{\boldsymbol{r}}_{\text{EM}} \right) - \frac{2}{5} \left(\hat{\boldsymbol{p}} \times \frac{I}{m} \hat{\boldsymbol{p}} \right) \right]$$

8/26

Модель физической либрации Луны (II)

Эластичная Луна

- Динамическая матрица инерции с учётом приливной и вращательной деформаций (с задержкой т).
- Динамические коэффициенты гравитационного потенциала

$$\begin{split} \frac{I}{m} &= \frac{2R_M^2 \tilde{J}_2}{2\beta - \gamma + \beta\gamma} \begin{bmatrix} 1 - \beta\gamma & 0 & 0 \\ 0 & 1 + \gamma & 0 \\ 0 & 0 & 1 + \beta \end{bmatrix} \\ &- k_2 \frac{\mu_E}{\mu_M} \left(\frac{R_M}{r} \right)^5 \begin{bmatrix} x^2 - \frac{1}{3}r^2 & xy & xz \\ xy & y^2 - \frac{1}{3}r^2 & yz \\ xz & yz & z^2 - \frac{1}{3}r^2 \end{bmatrix} \\ &+ k_2 \frac{R_M^5}{3\mu_M} \begin{bmatrix} 2(\omega_x \dot{\omega}_x - \frac{1}{3}\boldsymbol{\omega} \cdot \boldsymbol{\dot{\omega}}) & \omega_x \dot{\omega}_y + \dot{\omega}_x \omega_y & \omega_x \dot{\omega}_z + \dot{\omega}_x \omega_z \\ \omega_x \dot{\omega}_y + \dot{\omega}_x \omega_y & 2(\omega_y \dot{\omega}_y - \frac{1}{3}\boldsymbol{\omega} \cdot \boldsymbol{\dot{\omega}}) & \omega_y \dot{\omega}_z + \dot{\omega}_y \omega_z \\ \omega_x \dot{\omega}_z + \dot{\omega}_x \omega_z & \omega_y \dot{\omega}_z + \dot{\omega}_y \omega_z & 2(\omega_z \dot{\omega}_z - \frac{1}{3}\boldsymbol{\omega} \cdot \boldsymbol{\dot{\omega}}) \end{bmatrix} \end{split}$$

$$C_{20} = \frac{1}{R_M^2} \left[\frac{1}{2} \left(\frac{I_{11}}{m} + \frac{I_{22}}{m} \right) - \frac{I_{33}}{m} \right]$$

$$C_{21} = -\frac{1}{R_M^2} \frac{I_{13}}{m}$$

$$S_{21} = -\frac{1}{R_M^2} \frac{I_{32}}{m}$$

$$S_{21} = -\frac{1}{R_M^2} \frac{I_{32}}{m}$$

$$S_{22} = -\frac{1}{2R_M^2} \frac{I_{21}}{m}$$

Модель физической либрации Луны (III)

Луна с жидким ядром

- Уравнения вращения ядра в $\dot{\omega}_{m{c}} = \left(\frac{I_c}{m}\right)^{-1} \left[-\omega \times \frac{I_c}{m} \omega_c \frac{N_{
 m cmb}}{m}\right]$ системе координат коры.
- Вклад ядра в матрицу инерции.

$$\frac{I_c}{m} = \alpha_c \frac{C_T}{m} \begin{bmatrix} 1 - f_c & 0 & 0 \\ 0 & 1 - f_c & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \frac{C_T}{m} = \frac{2(1+\beta)}{2\beta - \gamma + \beta\gamma} R_M^2 \tilde{J}_2$$

$$\begin{split} \frac{I}{m} &= \frac{2R_{M}^{2}\tilde{J}_{2}}{2\beta - \gamma + \beta\gamma} \begin{bmatrix} 1 - \beta\gamma & 0 & 0 \\ 0 & 1 + \gamma & 0 \\ 0 & 0 & 1 + \beta \end{bmatrix} - \frac{I_{c}}{m} \\ &- k_{2} \frac{\mu_{E}}{\mu_{M}} \left(\frac{R_{M}}{r} \right)^{5} \begin{bmatrix} x^{2} - \frac{1}{3}r^{2} & xy & xz \\ xy & y^{2} - \frac{1}{3}r^{2} & yz \\ xz & yz & z^{2} - \frac{1}{3}r^{2} \end{bmatrix} \\ &+ k_{2} \frac{R_{M}^{5}}{3\mu_{M}} \begin{bmatrix} 2(\omega_{x}\dot{\omega}_{x} - \frac{1}{3}\boldsymbol{\omega} \cdot \dot{\boldsymbol{\omega}}) & \omega_{x}\dot{\omega}_{y} + \dot{\omega}_{x}\omega_{y} & \omega_{x}\dot{\omega}_{z} + \dot{\omega}_{x}\omega_{z} \\ \omega_{x}\dot{\omega}_{y} + \dot{\omega}_{x}\omega_{y} & 2(\omega_{y}\dot{\omega}_{y} - \frac{1}{3}\boldsymbol{\omega} \cdot \dot{\boldsymbol{\omega}}) & \omega_{y}\dot{\omega}_{z} + \dot{\omega}_{y}\omega_{z} \\ \omega_{x}\dot{\omega}_{z} + \dot{\omega}_{x}\omega_{z} & \omega_{y}\dot{\omega}_{z} + \dot{\omega}_{y}\omega_{z} & 2(\omega_{z}\dot{\omega}_{z} - \frac{1}{3}\boldsymbol{\omega} \cdot \dot{\boldsymbol{\omega}}) \end{bmatrix} \begin{matrix} C_{20} = \frac{1}{R_{M}^{2}} \left[\frac{1}{2} \left(\frac{I_{2}}{R_{M}^{2}} \right) \right] \\ C_{21} = -\frac{1}{4R_{M}^{2}} \left[\frac{I_{2}^{*}}{m} \right] \\ S_{21} = -\frac{1}{R_{M}^{2}} \frac{I_{13}^{*}}{m} \\ S_{21} = -\frac{1}{2R_{M}^{2}} \frac{I_{21}^{*}}{m} \\ S_{22} = -\frac{1}{2R_{M}^{2}} \frac{I_{21}^{*}}{m} \\ I^{*} = I + I_{c} \end{matrix}$$

$$C_{20} = \frac{1}{R_M^2} \left[\frac{1}{2} \left(\frac{I_{11}^*}{m} + \frac{I_{22}^*}{m} \right) - \frac{I_{33}^*}{m} \right]$$

$$C_{22} = \frac{1}{4R_M^2} \left[\frac{I_{22}^*}{m} - \frac{I_{11}^*}{m} \right]$$

$$C_{21} = -\frac{1}{R_M^2} \frac{I_{13}^*}{m}$$

$$S_{21} = -\frac{1}{R_M^2} \frac{I_{32}^*}{m}$$

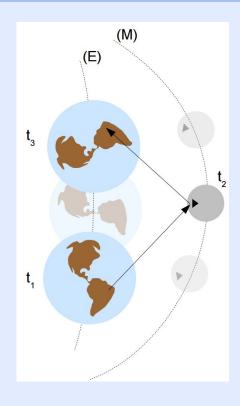
$$S_{22} = -\frac{1}{2R_M^2} \frac{I_{21}^*}{m}$$

- Момент, сообщаемый коре трением на границе с ядром.
- Момент, сообщаемый коре из-за сплюснутости ядра.

$$\frac{N_{\text{cmb}}}{m} = \frac{C_T}{m} \left[\frac{k_v}{C_T} (\boldsymbol{\omega}_c - \boldsymbol{\omega}) + \alpha_c f_c (\boldsymbol{\hat{z}} \cdot \boldsymbol{\omega}_c) (\boldsymbol{\hat{z}} \times \boldsymbol{\omega}_c) \right]$$

Редукции LLR-наблюдений (I)

 Итерационное решение уравнения для определения времени отражения луча;


$$\begin{cases} t_2 - t_1 = \frac{|\boldsymbol{l}_{\text{BCRS}}(t_2) - \boldsymbol{s}_{\text{BCRS}}(t_1)|}{c} + \Delta_{\text{grav}}(t_1, t_2) + \Delta_{\text{atm}}(t_1, t_2) \\ t_3 - t_2 = \frac{|\boldsymbol{s}_{\text{BCRS}}(t_3) - \boldsymbol{l}_{\text{BCRS}}(t_2)|}{c} + \Delta_{\text{grav}}(t_3, t_2) + \Delta_{\text{atm}}(t_3, t_2) \end{cases}$$

- Учёт релятивистской задержки сигнала (Копейкин, 1990);
- Учёт тропосферной задержки (Mendes, Pavlis, 2004);
- Преобразование UTC к динамическому времени TDB, интегрируемому совместно с эфемеридами EPM;

$$\begin{split} TDB - TT &= \frac{L_G - L_B}{1 - L_B} (TDB - T_0) + \frac{1 - L_G}{1 - L_B} TDB_0 \\ &+ \frac{1 - L_G}{1 - L_B} \int_{T_0 + TDB_0}^{TDB} \frac{1}{c^2} \bigg(\frac{v_E^2}{2} + w_{0E} + w_{LE} \bigg) dt + \frac{1}{c^2} \mathbf{v}_{\mathbf{E}} \cdot \big(\mathbf{r}_S - \mathbf{r}_E \big) \\ &- \frac{1 - L_G}{1 - L_B} \int_{T_0 + TDB_0}^{TDB} \frac{1}{c^4} \bigg(- \frac{v_e^4}{8} - \frac{3}{2} v_E^2 w_{0E} + 4 \mathbf{v}_E \cdot \mathbf{w}_{AE} + \frac{1}{2} w_{0E}^2 + \Delta_E \bigg) dt \\ &+ \frac{1}{c^4} \bigg(3 w_{0E} + \frac{v_E^2}{2} \bigg) \mathbf{v}_E \cdot (\mathbf{r}_S - \mathbf{r}_E) \end{split}$$

- Преобразование TDB к собственному времени станции;
- Немоделируемые сдвиги.

$$C = t_3 - t_1 + \text{TTminusTDB}(t_3) - \text{TTminusTDB}(t_1)$$
$$+ \frac{\dot{\mathbf{r}}_E(t_1) \cdot \mathbf{s}_{GCRS}(t_1)}{c^2} - \frac{\dot{\mathbf{r}}_E(t_3) \cdot \mathbf{s}_{GCRS}(t_3)}{c^2} + b$$

Редукции LLR-наблюдений (II)

- Преобразование CRS→TRS с моделью IAU2000/2006 и поправками к ПВЗ IERS C04 (+ KEOF);
- Смещение станции из-за твердотельных (Dehant, Matthews, 2000), океанических (FES2004) и полюсных приливов;
- Релятивистское преобразование положений станции и отражателя в BCRS;
- Лунные твердотельные приливы от Земли и Солнца.

$$s_{\mathrm{GCRS}} = R_{\mathrm{T2C}} \, s_{\mathrm{TRS}} + \boldsymbol{\Delta}_{\mathrm{pole}} + \boldsymbol{\Delta}_{\mathrm{solid}} + \boldsymbol{\Delta}_{\mathrm{ocean}}$$

$$m{s}_{\mathrm{BCRS}} = m{r}_{E} + m{s}_{\mathrm{GCRS}} \left(1 - \frac{U_{E}}{c^{2}} \right) - \frac{1}{2} \left(\frac{\dot{m{r}}_{E} \cdot m{s}_{\mathrm{GCRS}}}{c^{2}} \right) \dot{m{r}}_{E}$$

$$\Delta_{\text{solidmoon}} = \frac{\mu_A l^4}{\mu_M r_{\text{MA}}^3} \left[3l_2 \left(\hat{\boldsymbol{r}}_{\text{MA}} \cdot \hat{\boldsymbol{l}} \right) \hat{\boldsymbol{r}}_{\text{MA}} + \left(3 \left(\frac{h_2}{2} - l_2 \right) \left(\hat{\boldsymbol{r}}_{\text{MA}} \cdot \hat{\boldsymbol{l}} \right)^2 - \frac{h_2}{2} \right) \hat{\boldsymbol{l}} \right]$$

$$\mathbf{l}_{\text{BCRS}} = \mathbf{r}_{M} + \mathbf{l}_{\text{LCRS}} \left(1 - \frac{U_{M}}{c^{2}} \right) - \frac{1}{2} \left(\frac{\dot{\mathbf{r}}_{M} \cdot \mathbf{l}_{\text{LCRS}}}{c^{2}} \right) \dot{\mathbf{r}}_{M}$$
$$\mathbf{l}_{\text{LCRS}} = R_{\text{L2C}} \, \mathbf{l}_{\text{PA}} + \mathbf{\Delta}_{\text{solidmoon}}^{(E)} + \mathbf{\Delta}_{\text{solidmoon}}^{(S)}$$

Немоделируемые эффекты

Либрация в долготе, в системе координат MER

$$\Delta \Lambda = A_1 \cos l' + A_2 \cos(2l - 2D) + A_3 \cos(2F - 2L)$$

l' — средняя аномалия Солнца, l — средняя аномалия Луны, D — среднее солнечное удлинение Луны, F — аргумент широты.

Перевод из системы координат MER в PA:

$$R_{\text{libr}}(\Lambda) = R_x(-\delta_x)R_y(-\delta_y)R_z(\Lambda)R_y(\delta_y)R_x(\delta_x) \approx R_z(\Lambda)$$

Вековое изменение эксцентриситета (extra de/dt)

Из аналитической теории (Chapront-Touzé, Chapront 1988):

$$dA/de \approx -\frac{20905.4}{e}\cos l - \frac{3699.1}{e}\cos(2D - l) \approx -380791\cos l - 67379\cos(2D - l)$$

Компенсация эффектов в структуре Луны

C32, S32, C33 — уточняются, вместо заимствования из GL660b.

Сдвиги нормальных точек

#	Station	from	to	#	Station	from	to
1	Apache	07.04.2006	01.11.2010	15	Haleakala	02.04.1986	30.07.1987
2	Apache	15.12.2007	30.06.2008	16	Haleakala	31.07.1987	14.08.1987
3	Apache	20.09.2008	20.06.2009	17	Haleakala	09.06.1985	10.06.1985
4	Apache	01.11.2010	07.04.2012	18	Haleakala	28.01.1989	29.01.1989
5	Apache	07.04.2012	02.09.2013	19	Haleakala	23.08.1989	24.08.1989
6	CERGA	01.06.1984	13.06.1986	20	Haleakala	06.02.1990	01.09.1990
7	CERGA	01.10.1987	01.08.2005	21	McDonald	01.01.1969	01.07.1985
8	CERGA	10.12.1996	18.01.1997	22	McDonald	01.12.1971	05.12.1972
9	CERGA	08.02.1997	24.06.1998	23	McDonald	21.04.1972	27.04.1972
10	CERGA	04.12.2004	07.12.2004	24	McDonald	18.08.1974	16.10.1974
11	CERGA	03.01.2005	06.01.2005	25	McDonald	05.10.1975	01.03.1976
12	CERGA	01.11.2009	01.01.2014	26	McDonald	01.12.1983	17.01.1984
13	Haleakala	01.11.1984	01.09.1990	27	Matera	01.01.2003	01.01.2016
14	Haleakala	01.11.1984	01.04.1986	28	MLRS1	01.08.1983	28.01.1988

Граничные даты сдвигов соответствуют датам замены оборудования на станциях, либо скачкам неизвестной природы, видимых в О-С.

Различия между реализациями ИПА и JPL

	JPL	ИПА РАН
Модель вращения Земли	Модифицированная IAU1980 с дополнительными уточняемыми параметрами, ряд ПВЗ JPL KEOF	IAU2000/2006 (SOFA), ряд ПВЗ IERS CO4 (но до 1984 – JPL KEOF)
Модель приливных возмущений орбиты	Упрощённая, с 3 фиксированными и 2 уточняемыми параметрами	Та же + дополнительное решение с IERS2010 (до 2 степени)
Модель гравитационного потенциала Луны	Решение, близкое к GL660b; C21 = S21 = S22 = 0 с периодическими приливными возмущениями. C32, S32, C33 уточняются.	Та же + дополнительное решение с S21 из GL660b

Уточняемые параметры

Начальные параметры (15)

- Положение и скорость Луны (x, y, z, \dot{x} , \dot{y} , \dot{z})
- Начальные углы либрации (φ, θ, ψ) и скорости их изменения
- Угловая скорость жидкого ядра (ω_c)

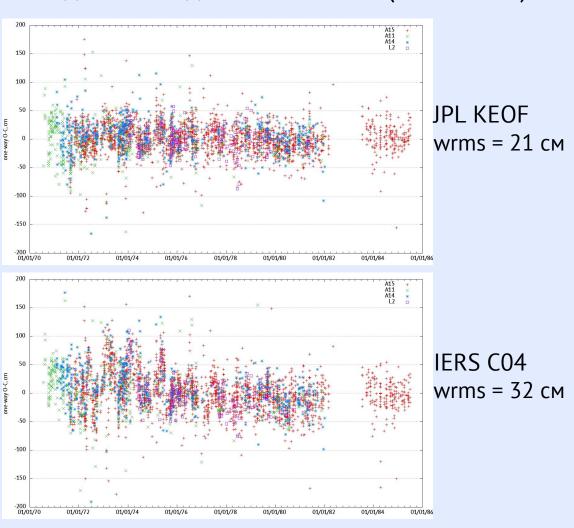
Динамические параметры (9)

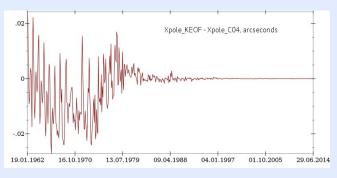
- Сумма GM Земли и Луны
- Параметры инерции β = (C A)/B, γ = (B A)/C
- Приливная задержка т
- Коэффициенты гравитационного потенциала Луны С32, S32, C33
- Коэффициент сжатия жидкого ядра f_c , коэффициент трения K_v/C

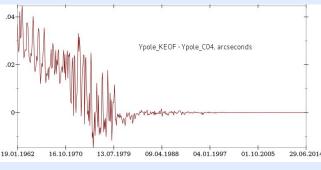
Редукционные параметры (72)

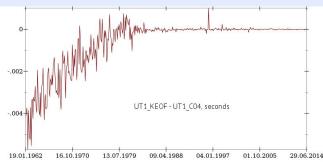
- Положения 5 отражателей и 7 станций
- Скорости станций CERGA и Apache/McDonald/MLRS1/MLRS2
- h₂ Луны
- Амплитуды немоделируемых колебаний ψ : cos l, cos(2l-2D), cos(2F-2l)
- Сдвиги (28 шт.)

Все параметры динамической модели


Notation	parameter	type	notes
μ_S	standard gravitational parameter of the Sun	fixed	fixed to DE430 value in this work; may differ in the EPM ephemeris
μ_E/μ_M	Earth-Moon mass ratio	fixed	determined from spacecraft observations; fixed to DE430 value in this work, may dif- fer in EPM
$\mu_E + \mu_M$	standard gravitational parameter of the E-M system	fit	
$egin{array}{c} C_{ m nm,E}, \ ar{S}_{ m nm,E} \end{array}$	spherical harmonic coeffi- cients of Earth's gravita- tional potential	fixed	up to $n_{\rm max}=6$, taken from model based on EGM2008, see section 6.1 of Conventions; DE tidal model comes with an altered $\bar{C}_{20,\rm E}$
k_{20}, k_{21}, k_{22}	potential degree-2 Love numbers of Earth zonal, diurnal, and semi-diurnal tides	fixed	in DE tidal model: $k_{20} = 0.335$, $k_{21} = 0.320$, $k_{22} = 0.282$; IERS tidal model is more complex
$\tau_{0\mathrm{O}}, \tau_{1\mathrm{O}}, $ $\tau_{2\mathrm{O}}$	orbital delays of Earth zonal, diurnal, and semi- diurnal tides	fixed/absent	only in DE tidal model: $\tau_{0\rm O} = 0.0780~{\rm d},~\tau_{1\rm O} = -0.44~{\rm d},~\tau_{2\rm O} = -0.113~{\rm d}$
$ au_{1\mathrm{R}}, au_{2\mathrm{R}}$	rotational delays of Earth diurnal, semi-diurnal tides	fit/absent	present only in DE tidal model
l_2, k_2	degree-2 lunar Shida num- ber and Love number	fixed	taken from GRAIL results
h_2	degree-2 lunar radial dis- placement Love number	fit	
C_{20}	undistorted normalized main zonal lunar harmonic	fixed	taken from GRAIL (solution GL660b)

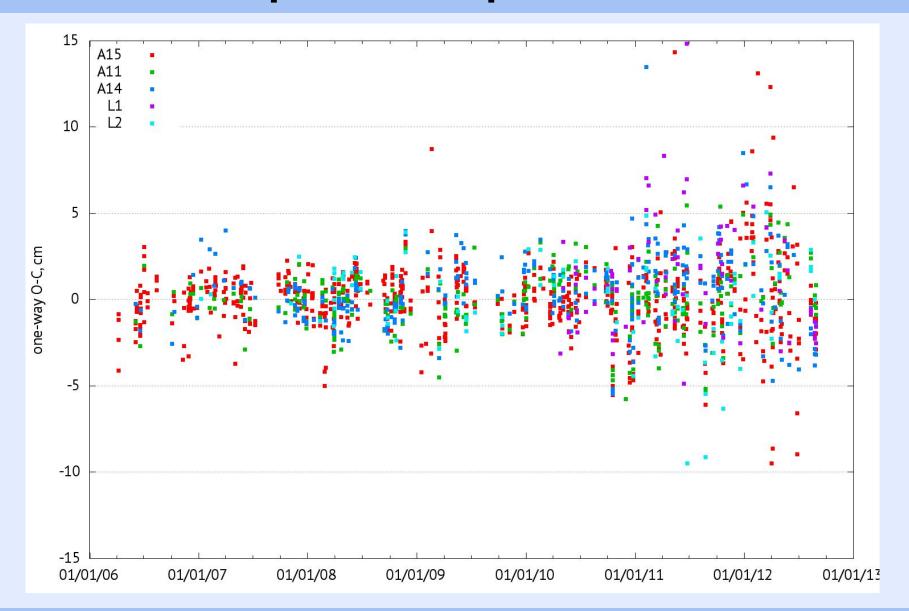

		0	
β, γ	ratios between undistorted	fit	
	main moments of itertia		
$\bar{C}_{21}, \bar{S}_{21},$	other degree-2 harmonics	fixed	zero; \bar{S}_{21} taken from
\bar{S}_{22}			GL660b in one solution
$\bar{C}_{32}, \bar{S}_{32},$	some degree-3 harmonics	fit	
$\bar{C}_{32}, \bar{S}_{32}, \\ \bar{S}_{33}$			
$\bar{C}_{\mathrm{nm}},\bar{S}_{\mathrm{nm}}$	other lunar harmonics	fixed	taken from GL660b up to
lessoniseds lessonise			degree 6
τ	lunar tidal delay	fit	
f_c	oblateness of the lunar core	fit	
k_v/C_T	CMB interaction	fit	
α_c	core polar moment / undis-	fixed	DE430 fixed value 0.0007
40000000	torted total polar moment		76-310-300-300-300-30-30-300-300-300-300-3
A_1, A_2, A_3	unmodeled longitude libra-	fit	
	tion amplitudes		
$l_{\rm PA}~(\times 5)$	positions of five lunar	fit	
20 20	retroreflectors		
$m{r}_{ ext{EM}},m{\dot{r}}_{ ext{EM}}$	position and velocity of the	fit	
\$2.000 \$25.000 Co. \$4,000 B	Moon w.r.t. Earth in the in-		
	ertial frame at epoch		
$\phi, \theta, \psi, \dot{\phi},$	Euler angles and their rates	fit	
$\dot{\theta},\dot{\psi}$	at epoch		
s_{TRS} (×7),	positions and velocities of	fixed/fit	see Table 4
$\dot{\boldsymbol{s}}_{\mathrm{TRS}}$ (×4)	stations at their epochs	anna ann ann Leannaidh	Annual Control
ω_c	angular velocity of the lunar	fit	
	core at epoch		
b (×28)	biases	fit	see Table 2
$\mathrm{d}e/\mathrm{d}t$	extra eccentricity rate	fit/absent	present in some solutions


Parameter	type	notes
McDonald position	fit	epoch 01.01.1991
MLRS1 position	fit	epoch 01.01.1991
MLRS2 position	fit	epoch 01.01.1991
Apache position	fit	epoch 01.06.2009
McDonald, MLRS1/2,	fit	
Apache velocity		
CERGA position	fit	epoch 01.01.2000
CERGA velocity	fit	
Haleakala position	fit	epoch 01.04.1986
Haleakala velocity	fixed	from GNSS solution: $\dot{\mathbf{s}}_{TRS} = (-1.30, 6.16, 3.21)^T \text{ cm/yr}$
Matera position	fit	epoch 01.01.2008
Matera velocity	fixed	from GNSS solution: $\dot{s}_{TRS} = (-1.85, 1.86, 1.47)^T \text{ cm/yr}$

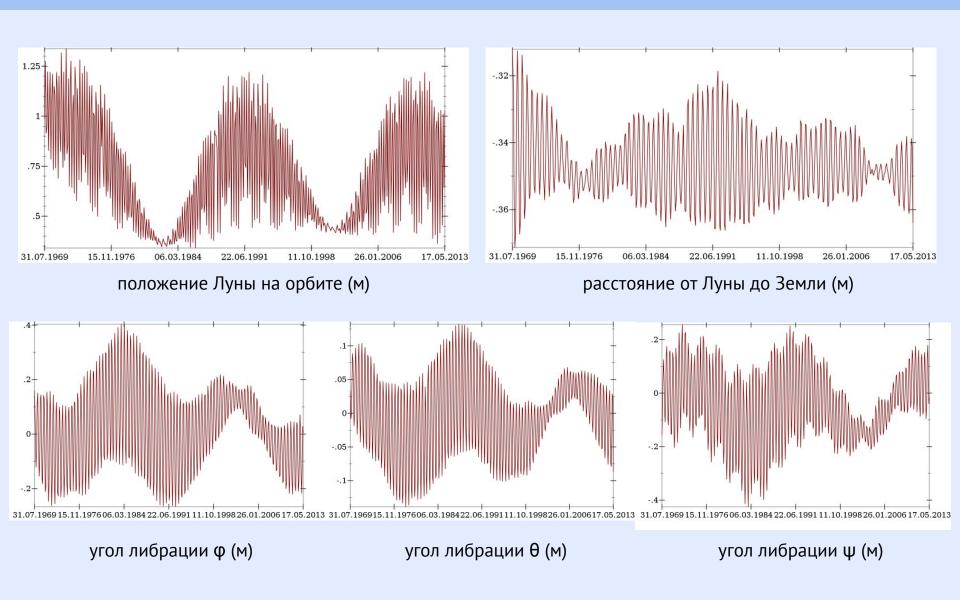

Непригодность IERS CO4 для LLR ранних лет

O-C для наблюдений McDonald (1970-1985):

JPL KEOF vs IERS C04, 1962-2014


Статистика представления наблюдений

Станция	Период	Норм. точек	использовано	отброшено	One-way wrms, см
McDonald	1970-1985	3604	3542	62	19.8
MLRS1	1983-1988	631	579	52	6.2
MLRS2	1988-2013	3653	3200	453	3.3
Haleakala	1984-1990	770	748	22	5.6
Cerga (Ruby)	1984-1986	1188	1109	79	17.2
Cerga (YAG)	1987-2005	8324	8271	53	2.6
Cerga (MeO)	2009-2013	654	645	9	2.5
Matera	2003-2013	83	64	19	3.9
Apache	2006-2012	1573	1545	49	1.4


Нормальные точки:

http://polac.obspm.fr/llrdatae.html, http://physics.ucsd.edu/~tmurphy/apollo/norm_pts.html

Остаточные разности Apache

Отличие полученной эфемериды от DE430

Уточнённые параметры

Parm.	Solution I value	Solution II value	units
$r_{ m EM}.{ m x}$	-137136474.08 ± 0.05	-137136473.34 ± 0.06	m
$r_{ m EM}.{ m y}$	-311514604.04 ± 0.05	-311514604.28 ± 0.06	m
$r_{ m EM}.z$	-141738600.42 ± 0.05	-141738600.20 ± 0.05	m
$\dot{m{r}}_{\mathrm{EM}.\mathrm{X}}$	962372276.17 ± 0.15	962372276.40 ± 0.16	$\mu m/sec$
$\dot{r}_{\mathrm{EM}}.\mathrm{y}$	-375608190.25 ± 0.14	-375608188.58 ± 0.15	$\mu \mathrm{m/sec}$
$\dot{m{r}}_{ m EM}.{ m z}$	-268439311.47 ± 0.06	-268439310.20 ± 0.07	$\mu \mathrm{m/sec}$
$\dot{\omega}_{c}.x$	$(-908 \pm 4) \cdot 10^{-6}$	$(-952 \pm 4) \cdot 10^{-6}$	rad/day
$\dot{\omega}_c$.y	$(-6378 \pm 8) \cdot 10^{-6}$	$(-6439 \pm 8) \cdot 10^{-6}$	rad/day
$\dot{\omega}_{c}$.z	$(229.63 \pm 0.05) \cdot 10^{-3}$	$(230.24 \pm 0.02) \cdot 10^{-3}$	rad/day
ϕ	$(-5823794 \pm 2) \cdot 10^{-8}$	$(-5823801 \pm 2) \cdot 10^{-8}$	rad
θ	$(39511623 \pm 1) \cdot 10^{-8}$	$(39511619 \pm 1) \cdot 10^{-8}$	rad
ψ	$(113574558 \pm 3) \cdot 10^{-8}$	$(113574573 \pm 3) \cdot 10^{-8}$	rad
$\dot{\phi}$	-74.538 ± 0.001	-74.544 ± 0.001	"/day
$\dot{\theta}$	-37.0264 ± 0.0004	-37.026 ± 0.004	"/day
$\dot{\psi}$	47501.855 ± 0.001	47501.860 ± 0.001	"/day
$\mu_E + \mu_M$	403503.2366 ± 0.0002	403503.2360 ± 0.0002	$\rm km^3/s^2$
β	$(631027.9 \pm 0.5) \cdot 10^{-9}$	$(631027.9 \pm 0.5) \cdot 10^{-9}$	1
γ	$(227734.5 \pm 0.7) \cdot 10^{-9}$	$(227735.4 \pm 0.7) \cdot 10^{-9}$	1
τ	0.099 ± 0.001	0.072 ± 0.001	day
$ au_{1 m R}$	0.00783 ± 0.0003	N/A	day
τ_{2R}	0.002862 ± 0.00003	N/A	day

f_c		$(0.219 \pm 0.005) \cdot 10^{-3}$	
k_v/C_T	$(16.2 \pm 0.2) \cdot 10^{-9}$	$(19.9 \pm 0.2) \cdot 10^{-9}$	day^{-1}
h_2	0.042 ± 0.001	0.040 ± 0.001	1
A_1	4.6 ± 0.2	4.6 ± 0.2	mas
A_2	1.8 ± 0.2	1.0 ± 0.2	mas
A_3	-6.7 ± 0.5	-12.3 ± 0.5	mas
\bar{C}_{32}	$(14185.1 \pm 0.4) \cdot 10^{-9}$	$(14186.4 \pm 0.4) \cdot 10^{-9}$	1
S_{32}	$(4930.5 \pm 0.7) \cdot 10^{-9}$	$(4935.0 \pm 0.8) \cdot 10^{-9}$	1
S_{33}	$(11965 \pm 11) \cdot 10^{-9}$	$(11927 \pm 12) \cdot 10^{-9}$	1
A11 x	1591966.95 ± 0.06	1591966.77 ± 0.07	m
A11 y	690699.52 ± 0.04	690699.47 ± 0.05	m
A11 z	21003.76 ± 0.02	21003.80 ± 0.02	m
A14 x	1652689.88 ± 0.07	1652689.71 ± 0.07	m
A14 y	-520997.52 ± 0.04	-520997.66 ± 0.05	m
A14 z	-109730.51 ± 0.02	-109730.48 ± 0.02	m
A15 x	1554678.62 ± 0.07	1554678.41 ± 0.07	m
A15 y	98095.60 ± 0.04	98095.46 ± 0.04	m
A15 z	765005.20 ± 0.03	765005.22 ± 0.04	m
L1 x	1114292.57 ± 0.06	1114292.36 ± 0.07	m
L1 y	-781298.49 ± 0.04	-781298.75 ± 0.04	m
L1 z	1076058.50 ± 0.04	1076058.37 ± 0.04	m
L2 x	1339363.70 ± 0.06	1339363.49 ± 0.07	m
L2 y	801872.00 ± 0.04	801871.94 ± 0.04	m
L2 z	756358.66 ± 0.04	756358.67 ± 0.04	m

Parameter	Solution I value	Solution II value	units
$McD \lambda$	$17.06520015(7 \pm 6)$	$17.06520013(2\pm2)$	hours
$McD r cos \phi$	5492414.47 ± 0.03	5492414.45 ± 0.03	m
$McD r \sin \phi$	3235697.50 ± 0.02	3235697.47 ± 0.02	m
MLRS1 λ	$17.06560804(6 \pm 4)$	$17.06560805(1 \pm 4)$	hours
MLRS1 $r \cos \phi$	5492037.72 ± 0.02	5492037.65 ± 0.02	m
MLRS1 $r \sin \phi$	3236146.77 ± 0.01	3236146.77 ± 0.01	m
MLRS2 λ	$17.06565358(3 \pm 1)$	$17.06565358(6 \pm 2)$	hours
MLRS2 $r \cos \phi$	5491888.44 ± 0.01	5491888.44 ± 0.01	m
MLRS2 $r \sin \phi$	3236481.67 ± 0.01	3236481.66 ± 0.01	m
CERGA λ	$0.46143818(5\pm1)$	$0.46143818(3 \pm 1)$	hours
CERGA $r\cos\phi$	4615328.453 ± 0.002	4615328.488 ± 0.002	m
CERGA $r \sin \phi$	4389355.108 ± 0.003	4389355.106 ± 0.003	m

Haleakala λ	$13.58293969(6 \pm 1)$	$13.58293970(6 \pm 2)$	hours
Haleakala $r\cos\phi$	5971474.51 ± 0.01	5971474.53 ± 0.01	m
Haleakala $\sin \phi$	2242.188420 ± 0.01	2242.18845 ± 0.01	m
Apache λ	$16.94530512(0 \pm 1)$	$16.94530511(7 \pm 1)$	hours
Apache $r\cos\phi$	5370045.374 ± 0.003	5370045.379 ± 0.003	m
Apache $\sin \phi$	3435012.901 ± 0.002	3435012.911 ± 0.002	m
Matera λ	$1.1136409(0 \pm 6)$	$1.1136408(9 \pm 1)$	hours
Matera $r \cos \phi$	4846504.3 ± 0.2	4846504.23 ± 0.05	m
Matera $r \sin \phi$	4133249.59 ± 0.07	4133249.59 ± 0.02	m
$McD\dot{\lambda}$	-0.57 ± 0.1	-0.65 ± 0.01	mas/yr
$McD (r cos \phi)$	4.4 ± 0.2	2.9 ± 0.2	mm/yr
$McD (r \sin \phi)$	1.7 ± 0.5	0.2 ± 0.5	mm/yr
CERGA $\dot{\lambda}$	0.923 ± 0.008	0.916 ± 0.009	mas/yr
CERGA $(r\cos\phi)$	-15.7 ± 0.2	-16.9 ± 0.2	mm/yr
CERGA $(r \sin \phi)$	14.5 ± 0.4	14.3 ± 0.5	mm/yr

Немоделируемый дрейф эксцентриситета

Модель приливных возмущений DE430:

extra de/dt =
$$(2.4\pm0.2)\times10^{-12}/yr$$

Модель приливных возмущений IERS2010:

extra de/dt = $(-1.3\pm0.2)\times10^{-12}/yr$

Неопубликованный новый результат JPL:

extra de/dt ≈ 0?

Различные решения

Станция	One-way wrms, см						
	α	Α	В	С	D	E	F
McDonald	19.0	19.8	20.4	20.6	64.5	64.5	66.1
MLRS1	4.1	6.2	7.8	8.6	18.7	23.0	22.9
MLRS2	2.9	3.3	3.6	3.8	6.6	6.4	6.4
Haleakala	5.4	5.6	5.9	6.1	11.7	13.0	13.5
Cerga (Ruby)	15.8	17.2	17.5	17.7	27.9	28.1	32.5
Cerga (YAG)	2.6	2.6	2.7	3.8	5.6	5.7	6.4
Cerga (MeO)	2.6	2.5	3.1	3.7	8.6	9.7	10.2
Matera	3.7	3.9	3.5	3.8	9.9	6.7	4.1
Apache	1.5	1.4	1.6	2.7	3.8	4.6	5.2

α — на основе эфемерид DE430 с extra de/dt

A — на основе модели DE430 без extra de/dt

B — как A, с приливными вариациями IERS2010

С – как В, без немоделируемых эффектов и сдвигов ядра

D — как B, но без трения между ядром и корой

Е – как В, без жидкого ядра

F – как B, без немоделируемых эффектов, сдвигов и

Дальнейшее развитие

- 1. Ускорение численного интегрирования и обработки наблюдений.
- 2. Обработка свежих наблюдений.
- 3. Уточнение скорости Apache отдельно от McDonald.
- 4. Исследование влияния моделей тропосферы и океанической нагрузки на представление наблюдений.
- 5. Создание модели, объясняющей рассогласование главных моментов инерции Луны с корой (ненулевые значения C21, S21, S22 в GL660b).
- 6. Создание модели, объясняющей дополнительную либрацию в долготе;
- 7. Исследование причин расхождений решений GRAIL и LLR в S32, C33.
- 8. Улучшение модели лунных твердотельных приливов (Williams, 2014).
- 9. Анализ точности орбиты Луны

Джеймс Вильямс, Лаборатория реактивного движения, Калифорния, США 2015

Спасибо за внимание