Observation of intra-day variability of extragalactic radio sources on IAA antennas

Ipatov A. V.¹, Konnikova V. K.², Kharinov M. A.¹, Mikhailov A. G.¹, Melnikov A. E.¹, Smirnov A. D.¹, Mardyshkin V. V.¹

¹ Institute of Applied Astronomy, Russian Academy of Sciences, St. Petersburg ² Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow

The review describes the project of investigation of IDV with radio telescopes RT-32 at IAA Badary (Bd), Zelenchuckskaya (Zc) and Svetloe (Sv) observatories. The project was started in 2003 and still ongoing.

In 2016 a VLBI observations of IDV sources was started with three RT-32 and two new RT-13 (Bv, Zv) on Badary and Zelenchuckskaya observatories.

Purpose: search for IDV and determination of its parameters.

Observations: Each experiment consists of the sets of scans on reference and IDV sources:

<<<	Ref 30m	IDV 60m	Ref 30m	IDV 60m	Ref 30m	>>>

Observations was carried out in semi-automatic mode under MarkIV Field System software *(that is used for VLBI)* with help of the extra complex of software *(that was developed in IAA for SD)*.

Nineteen sources was observed at 3.5 and 6.2 cm:

N	ID	RA2000 DE2000	N	ID	RA2000 DE2000
4	11010,2045	18:19:27	11	J1504+1029	15:04:25
I	J1819+3845	+38:45:01	11		+10:29:39
2	10527+0221	05:27:33	12	J2253+1608	22:53:58
	30327+0331	+03:31:32			+16:08:54
3	10721+0406	07:21:24	13	J1104+38	11:04:27
	50721+0400	+04:06:44	15		+38:12:32
4	11728+0427	17:28:25	14	J0309+1029	03:09:04
	5172010427	+04:27:05	14		+10:29:16
5	10449+1121	04:49:08	15	J0530+1331	05:30:56
	5044511121	+11:21:29			+13:31:55
6	11347+1217	13:47:33	16	J1603+1105	16:03:42
	5151171211	+12:17:24			+11:05:49
7	J2123+0535	21:23:45	17	J1756+1553	17:56:34
		+05:35:22			+15:53:44
8	J0721+7121	07:21:53	18	J1728+1215	17:28:07
		+71:20:37			+12:15:39
9	J0211+1051	02:11:13	19	J0238+1636	02:38:39
_		+10:51:35			+16:36:59
10	11159+2914	11:59:32			
10	5115512514	+29:14:44			

Reduction: during the reduction of the data, we used a robust method for determining the zero-flux level and a method for optimal filtration. We used the Fisher criterion to filter out data corrupted by poor weather conditions or man-made interference. The procedure used for the observations and processing are described in detail in [1].

Statistical analysis:

Chi-Square-test to check whether a source is variable or not:

N - number of measurements $S_i \& \Delta S_i - mean flux density and its$ error for the individual set of scans $\langle S \rangle - mean flux density for full$ **# Structure function of the first-order (SF)** for to rough estimation of the variability timescale τ_{sf} .

 $D(\tau) = \langle [S(t) - S(t+\tau)]^2 \rangle_t$ τ – temporal lag

The variability timescales were determined from the form of the SF. Above the level of the instrumental noise, the SF grows as a power law until it reaches a saturation level. The intersection of the power-law part with the saturation level yields the timescale $\tau_{\rm sf}$.

Autocorrelation function (ACF) to determine more accurately the variability timescale – time delay corresponding to the first ACF minimum τ_{acf} corresponds to the time delay where the SF reaches its maximum.

2003-2005 = Tests on J1819+3845. First stage result: IAA antennas are usable for observation of IDV. We continue to searching IDV in sources with flat-spectrum mainly from RATAN-600 Surveys.

Results = J0527+0331. 24 experiments at 3.5cm with Zc RT-32 during 2004/07-2007/03. IDV was detected in period 2005/01-04 on 8 sessions when the source activity was near its maximum. [1]

 S_{var} =100mJy, IDV time-scale τ_{sf} =4.3-4.5hr. D_{var} ≥160 => origin of these IDV is most likely external.

Results = J0721+0406. 18 experiments at 3.5cm with Zc RT-32 during 2005/01-2006/01. A weak IDV was detected on 9 sessions when the source activity was near its minimum. [1]

Results = J1728+0427. 8 experiments at 3.5cm with

Results = J1159+2914 (S5 1156+295). 28 exp-s at 3.5&6.2cm with Bd and Zc RT-32 during 2010/11-2013/05. IDV was detected in 2012/11/10-11 at 6.2cm. S_{var} =126mJy, IDV τ_{acf} =6hr. [5]

Results = J0530+1331 (B0528+134). 38 experiments at 3.5&6.2cm with Bd and Zc RT-32 during 2014/05-2015/12. IDV was detected on 3 sessions when the source activity was near its minimum with low modulation indexes m~0.9-1.2, S_{var} =98-120mJy. [6]

Results = J2253+1608 (3C454.3). 80 experiments at 3.5&6.2cm with Bd and Zc RT-32 during 2014/06-2015/12 and still going on. IDV was detected on 10 sessions. Recently from the first QUASAR 5-station VLBI observation in July 2016 was obtained an image of 3C454.3 at 13cm. Data are under processing and analyzing. Results will be published in 2017.

Summary

In 2003-2015 on IAA antennas was made a number of regular SD observations on searching and monitoring of IDV at 19 extragalactic flat-spectrum radio sources. Our statistic shows that significant IDV is observed mainly at the maximum phases of the long-term variability of the sources.

experiment of N sets.

Only sources for which this probability is $\leq 0.1\%$ are considered to be variable.

Modulation index to estimate the strength of the observed variation:

m [%] = 100 ΔS / <S>

 $\Delta S \& S - standard deviation & mean flux density for full experiment of N sets.$

Variable component flux density :

Zc RT-32 during 2005/03-09 and 2006/01. IDV was detected on 3 sessions when the source activity was near its minimum. IDV τ_{sf} =1.4-2.8hr. [1]

source activity. IDV τ_{sf} =10-12hr and τ_{acf} =8-16hr. [3, 4]

References

- 1. A. G. Gorshkov et al., Astron. Rep. 53, 5, 389 (2009).
- G. A. Seielstad, T. J. Pearson and A. C. S. Readhead, Publ. Astron. Soc. Pacif. **95**, 842 (1983)A. G. Gorshkov et al., Astron. Rep. **53**, 389 (2009).
- 3. A. G. Gorshkov et al., Astron. Rep. 55, 2, 97 (2011).
- 4. A. G. Gorshkov et al., Astron. Rep. **55**, 12, 1096 (2011).
- 5. A. G. Gorshkov et al., Astron. Rep. 58, 10, 716 (2014).
- 6. A. G. Gorshkov et al., Astron. Rep. **42**, 8, 506 (2016).

13th EUROPEAN VLBI NETWORK SYMPOSIUM & USERS MEETING 20-23 September 2016, St.Peterburg, Russia

