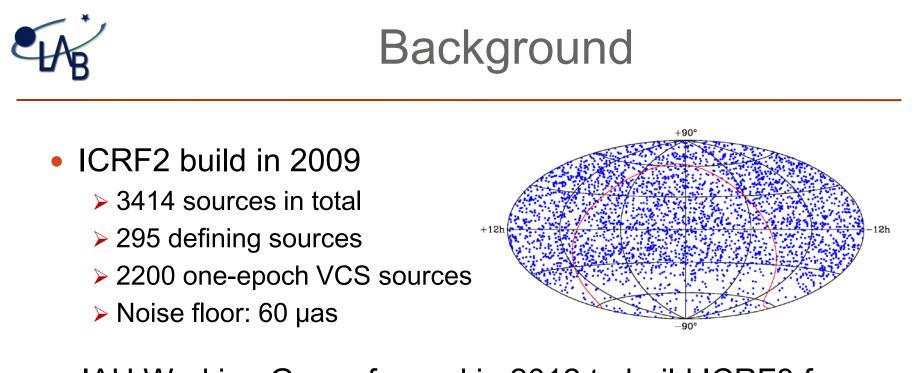
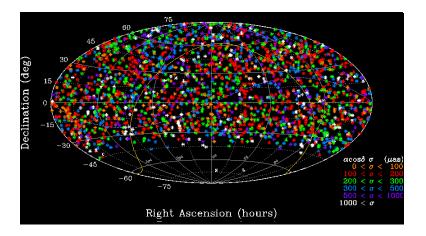
Astrometry and reference frames in the Gaia era


P. Charlot Laboratoire d'Astrophysique de Bordeaux

Outline

- Background: ICRF2
- ICRF3 construction
 > Observing status
 - > Work plan till 2018
- The Gaia mission
 - Overall status of the mission
 - Gaia Data Release 1
- Comparing radio and optical reference frames



- IAU Working Group formed in 2012 to build ICRF3 for adoption by IAU at 2018 General Assembly (Chair 2012-2015: C. Jacobs; Chair 2015-2018: P. Charlot)
- Main goal: produce the "best" VLBI reference frame to serve as reference for aligning the Gaia frame, allowing comparison of optical and radio positions at < 100 µas

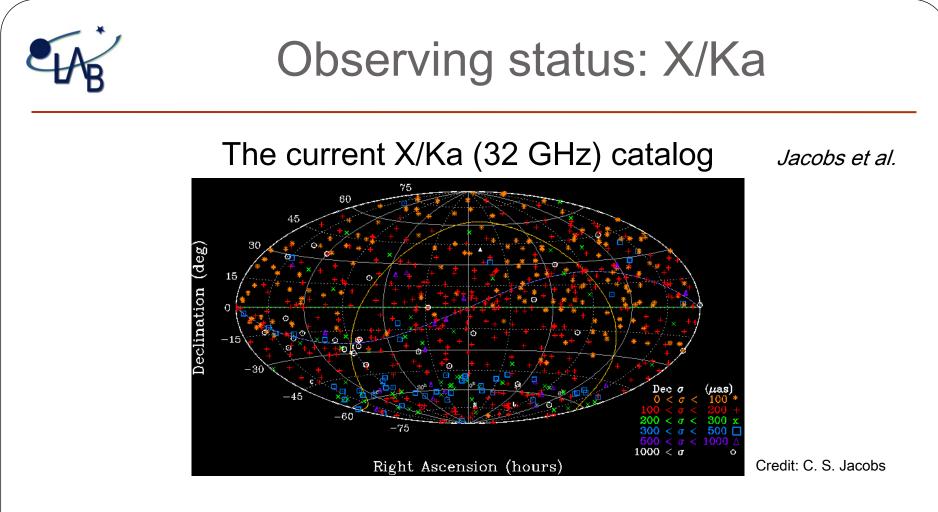
Observing status: S/X

- 1400 additional VLBI (IVS) sessions since ICRF2 was built in 2009
 - \rightarrow An increase of 30% in the number of sessions
 - → Amount of data 60% larger
- Reobservation of the VCS catalog (2400 sources) Gordon et al. (2016)
 - → 8 VLBA sessions in 2014-2015 (24-hour each, 2 Gb/s)
 - → 7 times improvement in position precision

S/X reference frame

VCS sources

Gordon et al. (2016)

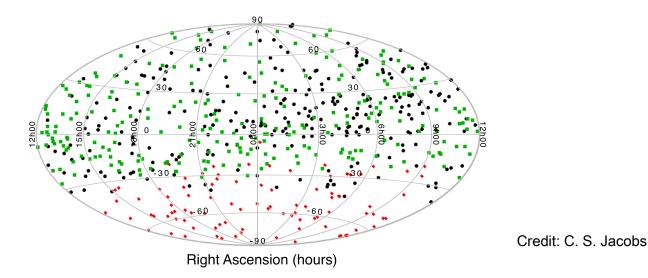

VCS sources	Right Ascension wrms (µas)	Declination wrms (µas)	Number of sources
VCS-I	2110	3560	2197
VCS-I + VCS-II	290	500	2197

Defining and non-VCS sources

Gordon et al. (2016)

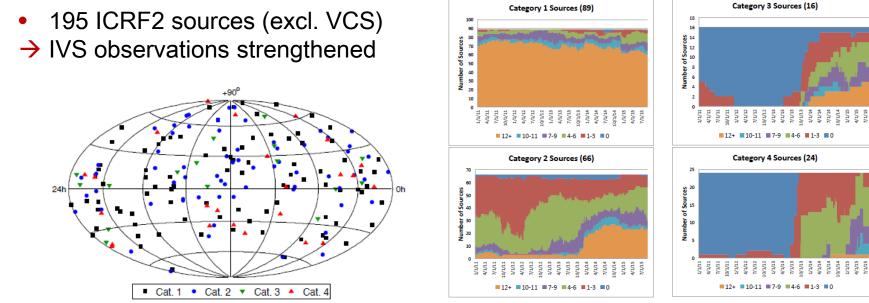
Defining & non- VCS sources	Right Ascension wrms (µas)	Declination wrms (µas)	Number of sources
ICRF2 (1980-2009)	55	81	1217
Current solution (1980-2016)	33	45	1217

13th EVN Symposium, St. Petersburg, 20-23 September 2016


→ 674 sources covering the entire sky
 → DSN + (Malargue. ESA, Argentina) observations
 → Errors at the ~ 100 µas level

13th EVN Symposium, St. Petersburg, 20-23 September 2016

Observing status: K-band


The current status of the K-band (24 GHz) catalog

- 275 sources from Lanyi et al. (2010) / Charlot et al. (2010) $\sigma \sim 200 \ \mu as$
- 4 additional VLBA sessions that observed 246 sources *Jacobs et al.*
- Completion of the Southern hemisphere with South Africa Australia observations *de Witt et al.*
 - \rightarrow 541 sources at present

Gaia transfer sources

Selection criteria: optical mag < 18 + structure index < 3

Bourda & Charlot (2012); Le Bail et al. (2016)

- An additional 163 VCS/ICRF2 sources identified
- 119 weak non-ICRF2 sources from dedicated EVN/VLBA project Bourda et al.
- Another ~100 sources in the deep South (δ <-30°) to be observed with the HARTRAO-HOBART baseline – *de Witt et al.* → In total 500+ sources

13th EVN Symposium, St. Petersburg, 20-23 September 2016

AB

Upcoming plans

- 2016
 - Prototype ICRF3 catalogs made by September 1, 2016
 - Extensive comparisons between S/X catalogs
 - Extensive comparisons between catalogs at S/X, X/Ka and K bands

• 2017

- Make pre-final ICRF3 catalogs
- Decide whether ICRF3 should be single-frequency, multi-frequency or combined
- Decide on defining sources
- Produce final ICRF3

• 2018

- Prepare IAU resolution
- Write Technical Note and ICRF3 paper
- Adoption of ICRF3 at IAU 2018 General Assembly

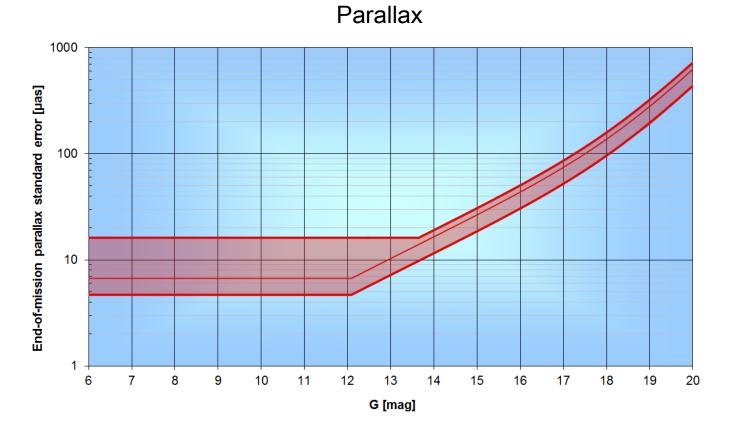
Moving on Gaia...

- Gaia launched on 19 December 2013 at 09:12:19 UTC
- Routine operations since July 2014
- Final Gaia catalog available > 2020

Gaia targets

- 1 billion stars (distance, motion, physical properties,...)
- 1 million galaxies
- ➢ 500 000 quasars
- > 100 000 extragalactic supernovae
- > 100 000 new Solar System bodies
- ➢ 7000 exoplanets
- 200 gravitational lenses

+ survey of the variable sky+ alerts on transient objects

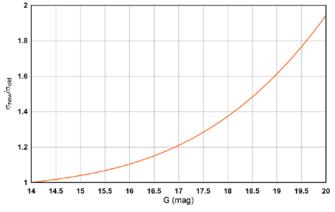


11

Gaia science goals

- Structure and dynamics of the Galaxy
- The star formation history of the Galaxy
- Stellar astrophysics
- Binaries and multiple stars
- Brown dwarfs and planetary systems
- Solar system
- Galaxies, quasars and the reference frame
- Fundamental physics: General Relativity

Factor of 0.7 and 0.5 for positions and proper motions


13th EVN Symposium, St. Petersburg, 20-23 September 2016

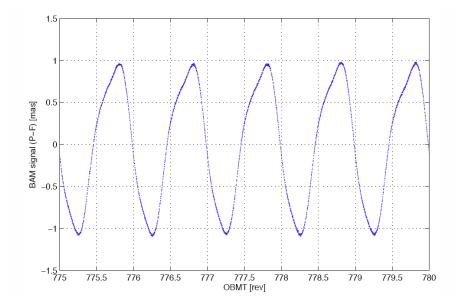
P. Charlot

12

Unwanted surprises (1)

- Stray light both from astronomical sources and the Sun
 - Sun stray light due to scattering of fibres at the edge of the Sun shield
 - Impact faint sources
 - > Astrometry less affected than photometry and spectroscopy

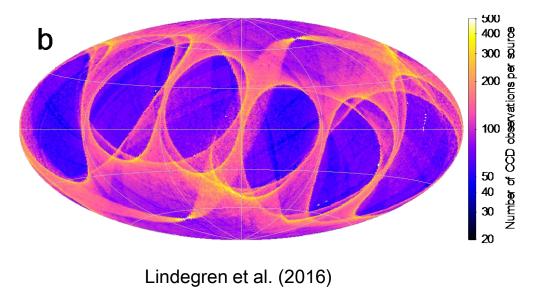
Degradation on astrometric accuracy

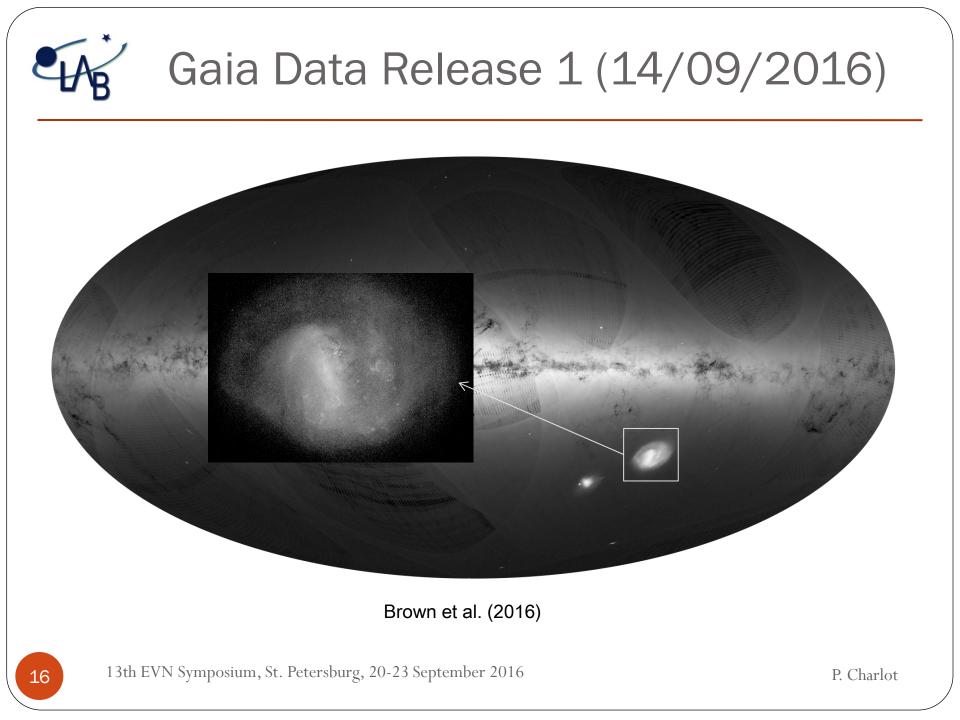

 Transmission loss due to continuing contamination of mirrors by water

- Periodic heating to solve the problem
- Water source diminishing

Unwanted surprises (2)

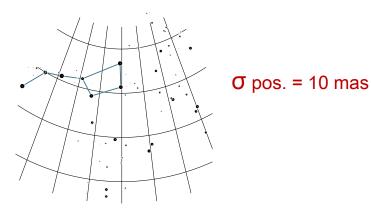
- Basic Angle variation larger than expected
 - Very regular oscillations with 1 mas amplitude
 - Can be calibrated to 10 µas accuracy (1%)

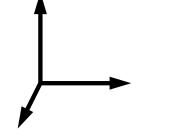

- Attitude disturbances
 - Micro-meteoroids and clanks

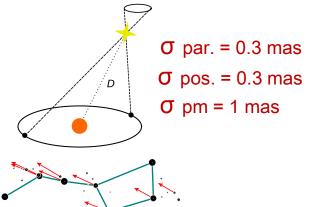


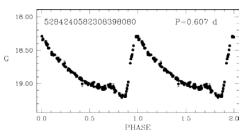
14 months of Gaia data used

- > 23 billion transits across focal plane
- All sources treated as single

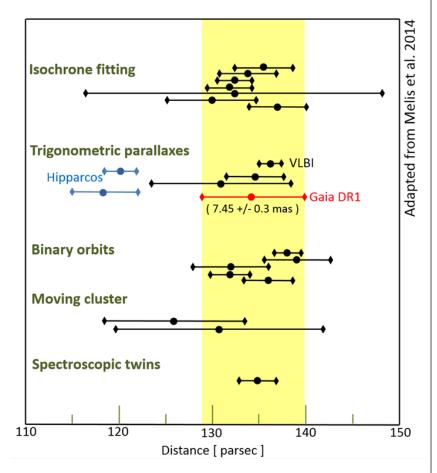

Mean number of observations per source

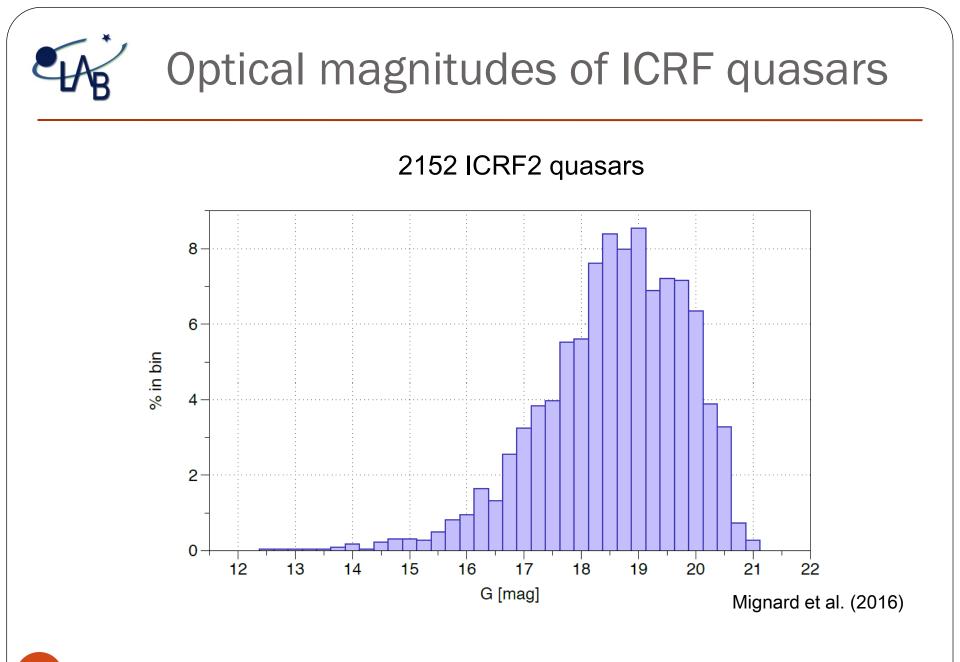


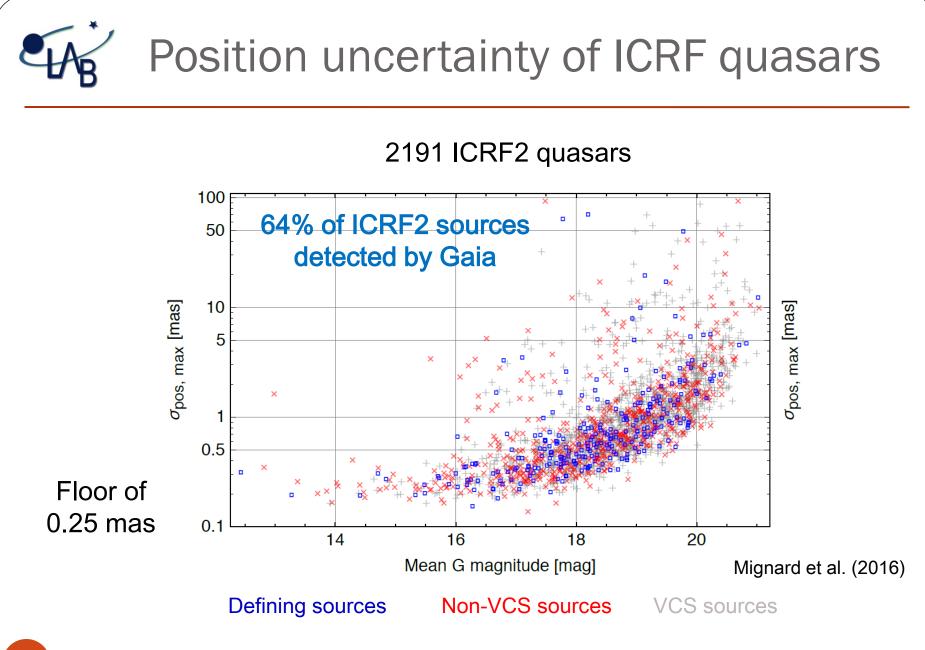

What's in the Gaia DR1 delivery?


1 billion star atlas

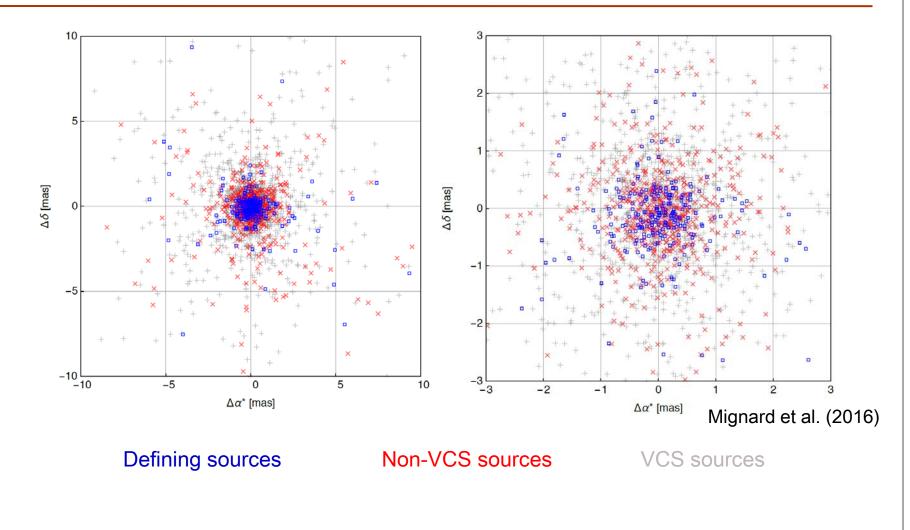
Positions and magnitudes for 2200 ICRF2 quasars

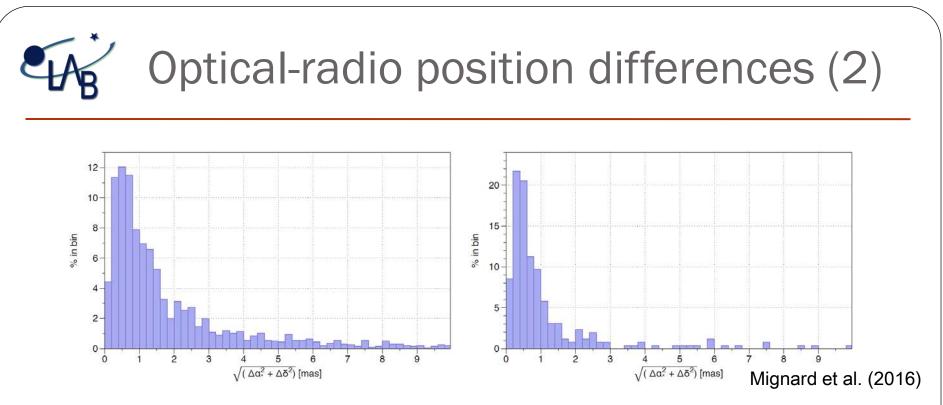

2 million proper motions and parallaxes (TGAS)


Light curves of variable stars near the South ecliptic pole

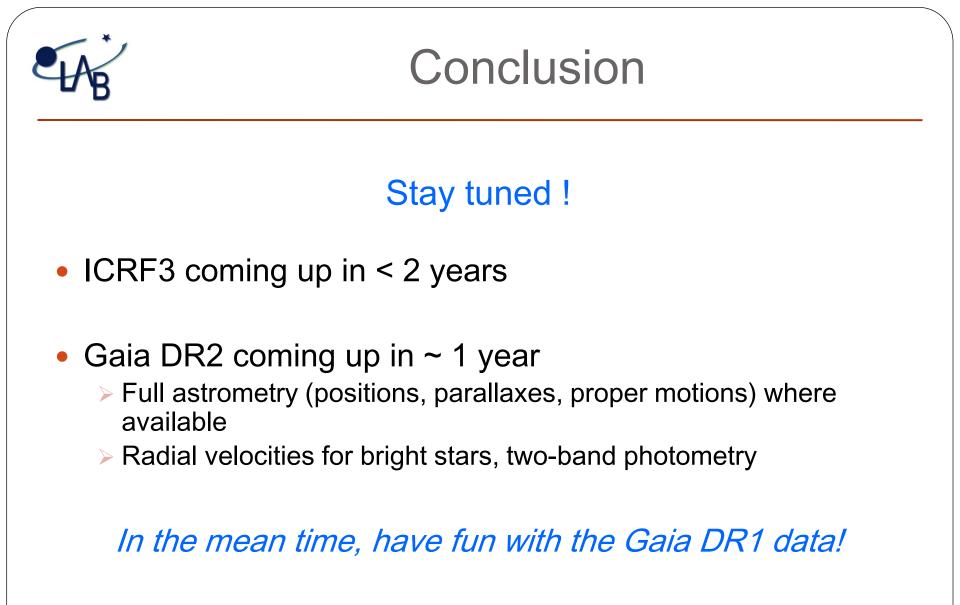

On the Pléiades cluster distance...

- Preliminary distance estimate: 136 ± 6 pc
- Limited in accuracy by:
 - Simplistic analysis
 - Systematic and correlated errors in the parallaxes
 - Incomplete survey of the cluster
- Good agreement with VLBI estimate
- Definite conclusion on the distance not yet possible


Brown et al. (2016)



13th EVN Symposium, St. Petersburg, 20-23 September 2016



Agreement < 10 mas for 94% of all sources (98% of the defining sources) Agreement < 1 mas for 44% of all sources (71% of the defining sources)

Differences generally consistent with the combined ICRF2 and Gaia position uncertainties

Among the sources with the most precise radio & optical positions, there is no indication of physical optical-radio offsets exceeding a few tens of mas

13th EVN Symposium, St. Petersburg, 20-23 September 2016

23

The Gaia mission*

Gaia Collaboration, T. Prusti^{1,**}, J. H. J. de Bruijne¹, A. G. A. Brown², A. Vallenari³, C. Babusiaux⁴,

C. A. L. Bailer-Jones⁵, U. Bastian⁶, M. Biermann⁶, D. W. Evans⁷, L. Eyer⁸, F. Jansen⁹, C. Jordi¹⁰, S. A. Klioner¹¹,

U. Lammers¹², L. Lindegren¹³, X

D. Pourbaix^{18, 19}, S. Randich²⁰, G. Sarri²

Gaia Data Release 1

Summary of the astrometric, photometric, and survey properties

Gaia Collaboration, A. G.A. Brown^{1,*}, A. Vallenari², T. Prusti³, J. H.J. de Bruijne³, F. Mignard⁴, R. Drimmel⁵, C. Babusiaux⁶, C. A.L. Bailer-Jones⁷, U. Bastian⁸, M. Biermann⁸, D. W. Evans⁹, L. Eyer¹⁰, F. Jansen¹¹, C. Jordi¹², N. Jordi¹², J. Babusiaux⁶, C. A.L. Bailer-Jones⁷, U. Bastian⁸, M. Biermann⁸, D. W. Evans⁹, L. Eyer¹⁰, F. Jansen¹¹, C. Jordi¹², N. Jordi¹², J. Babusiaux⁶, C. A.L. Bailer-Jones⁷, U. Bastian⁸, M. Biermann⁸, D. W. Evans⁹, L. Eyer¹⁰, F. Jansen¹¹, C. Jordi¹², N. Jordi¹², J. Babusiaux⁶, C. A.L. Bailer-Jones⁷, U. Bastian⁸, M. Biermann⁸, D. W. Evans⁹, L. Eyer¹⁰, F. Jansen¹¹, C. Jordi¹², N. Jordi¹², J. Babusiaux⁶, C. A.L. Bailer-Jones⁷, U. Bastian⁸, M. Biermann⁸, D. W. Evans⁹, L. Eyer¹⁰, F. Jansen¹¹, C. Jordi¹², N. Jordi¹², J. Babusiaux⁶, C. A.L. Bailer-Jones⁷, U. Bastian⁸, M. Biermann⁸, D. W. Evans⁹, L. Eyer¹⁰, F. Jansen¹¹, C. Jordi¹², N. Jordi¹², J. Babusiaux⁶, J. J. Babusiaux⁶, J. J. Babusiaux⁶, J. J. Babusiaux⁶, J. Babusiaux⁶, J. Jordi¹⁴, J. Babusiaux⁶, J. Babusiaux⁶, J. J. Babu

W. O'Mullane¹⁴, C. Panem¹⁶, D. Pourbaix^{17, 18}

Gaia data release 1

Pre-processing and source list creation

C. Fabricius¹, U. Bastian², J. Portell³, J. Castañeda³, M. Davidson⁴, N. C. Hambly⁴, M. Clotet³, M. Biermann², A. Mora⁵, D. Busonero⁶, A. Riva⁶, A. G. A. Brown⁷ R Smart⁶ U Lammers⁸ I Torra³ R Drimmel⁶ G Gracia⁹ W. Löffler², A. Spagna⁶, L. Lindegren¹⁰, S. K

Gaia Data Release 1

Astrometry – one billion positions, two million proper motions and parallaxes

L. Lindegren²², U. Lammers⁹, U. Bastian², J. Hernández⁹, S. Klioner¹⁴, D. Hobbs²², A. Bombrun⁹, D. Michalik²², M. Berley A. Berley 14, G. Generge⁹, D. Le¹¹, P. He¹¹, A. Hutton⁹, P. Parsons⁹, H. Steidelmüller¹⁴, N. Bach⁹, C. Barache¹⁹, U. Becciani²⁶,

Gaia Data Release 1

The reference frame and the optical properties of ICRF sources

F. Mignard¹, S. Klioner², L. Lindegren³, U.Bastian⁴, A. Bombrun⁵, J. Hernández⁶, D. Hobbs³, U. Lammers⁶, D. Michalik³, M. Ramos-Lerate⁷, M. Biermann⁴, A. Butkevich², G. Comoretto⁸, E. Joliet^{9, 5}, B. Holl¹⁰, A. Hutton¹¹, P. Parsons¹², H. Steidelmüller², A. Andrei¹³, G. Bourda¹⁴, and P. Charlot¹⁴

13th EVN Symposium, St. Petersburg, 20-23 September 2016