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Abstract Secular and seasonal variations of the coefficient Jo of the geopo-
tential are studied from the analysis of laser measurements of distances to the
geodetic satellites LAGEOS 1 (1988-2003) and LAGEOS 2 (1992-2003). Tt
is confirmed that beside the well-known annual variations with the amplitude
~ 2.5 x 10710 there also exist very significant semi-annual variations of a com-
parable amplitude. Phases of these two modes are such that the total effect
may be described as a sharp postive splash of J; in August and considerably
smaller variations in the rest part of year. The adopted theoretical value of the
so-called dynamical Love number k¢ (a scale factor of near-diurnal oscillations
aroused by the Earth’s fluid core in the coefficients c3, s3 of the geopotential) is
improved applying a simple close form of these oscillations expressed in terms
of the differential angular velocities v1, vo of the fluid core. It is shown that
this form is equivalent to the standard one of Fourier series in which such os-
cillations usually are referred to as a frequency-dependence of the Love number
ko. The derived estimate k§ = 0.0595 & 0.0007 statistically differs from the
theoretical value k§ = 0.063. Out-phase oscillation of k§ with the period about
18.6 years and the amplitude 0.0064 £ 0.0011 is detected giving evidence of
large dissipation in the fluid core. The estimated secular trend Jo (commonly
interpreted as the effect of the so-called Post-Glacial Rebound) appears twice
less than the value recommended by the standards of the International Earth
Rotation Service (IERS) but agrees with last findings of other authors.

Keywords: Earth’s satellites, geopotential, tides, Love numbers, SLR ob-
servations

1 Introduction

Starting point of this research was studying the near-diurnal oscillations dci,
dsd caused by the Earth’s fluid core in the coefficients ¢}, s3 of geopotential.
This effect (interpreted as the frequency-dependence of the Love number ko) is
presented by IERS standards in the form of the sum of trigonometric harmonics
that depend on the fundamental arguments of the nutation theory (McCarthy,
Petit, 2004). It may be shown that the amplitudes of these harmonics are
proportional to the so-called dynamical Love number kJ. In Appendix, the
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expression for the corrections dcl, ds} is derived in the simple close form:

des\ i K (n
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where vy, vy are the equatorial components of the angular velocity of the fluid
core relatively to the Earth as a whole, Js is the coeflicient of the second zonal
harmonics of the geopotential, w is the Earth angular velocity, ks = 0.93831 is
the so-called secular Love number. It will be also shown that this presentation
is equivalent to the standard form of trigonometric series for the frequency-
dependence of the Love number k5.

The parameter k¢ plays important role in two geodynamical problems. Firstly,
it is rotation of the deformable Earth in the framework of the standard SOS
model (Moritz, Muller, 1987), and secondly, dynamics of the Earth’s satellites.
In short, perturbations of rotation of the deformable Earth depend on the so-
called compliance £ that describes the tidal response of the moments of inertia of
the Earth on the differential rotation of its fluid core. This parameter may be ex-
pressed in terms of the dynamical Love number k¢ by the relation & = ekg/ks in
which e is the dynamical flattening of the Earth. Unfortunately, while process-
ing Celestial Pole positions provided by geodetic VLBI observations it proved
impossible to separate k¢ from the correction to the ratio of the moment of in-
ertia of the fluid core to that of the Earth as a whole (Shirai, Fukushima, 2001),
(Krasinsky, Vasilyev, 2006). On the other hand, the near-diurnal variations of
the coefficients c3, s} of the geopotential bring about accumulating secular ef-
fects in the node of satellite orbits and thus one may hope to estimate k¢ from
satellite laser ranging (SLR) observations of geodetic satellites. As the adopted
value of kg is purely theoretical, confronting it with experimental data is quite
an actual problem. The value derived in this paper from the analysis of SLR
data of the geodetic satellites LAGEOS 1 and LAGEOS 2 is, to our knowledge,
a first experimental estimation of this parameter.

JFrom the same analysis of the SLR data, we determine also corrections to
the coefficient Jo of the geopotential for studying the time-variability of this
coefficient. In such a study, obtaining the secular trend Jy is a problem of
primary importance as the IERS standards recommend to take this effect into
account whenever numerical integration of the equations of artificial satellite
motion has to be done. At present, two centers of analysis (University of Texas
and Goddard Space Flight Center) are monitoring the geopotential on a regular
basis. Recent publications of the first group (Cheng, Tapley, 2008) and the
second one (Lemoine et al., 2006) have revealed serious discrepancies between
the derived values of the secular trend: J, = —2.6x 107! /year and J, = —1.3x
10~ /year, correspondingly. So, the independent study of J> documented in
Section 3.3 seems to be actual.



2 Observations and their processing

We have used the laser observations of the geodetic satellites LAGEOS 1 (1988
2003), and LAGEOS 2 (1992-2003) taken from the server |ftp://cddis.nasa.gov.
The observations of each year were combined into one series and treated simulta-
neously. In Tab.1, the following information on the observations is given for each
year: their total number N,;s, the total number Ny of rejected observations,
the Weighted Root Mean Square (WRMS) error of one-way distances to the
satellite (in millimeters). Six orbital elements of the satellite under study and
two dynamical empirical terms (along- and cross-track perturbing accelerations)
were estimated weekly as local parameters. When processing the observations
of each year, these local parameters were determined simultaneously with the
global ones which are the coordinates of observing stations and the value of
the dynamical Love number k4. In addition, on each monthly interval (more
exactly, on the interval of four weeks) a correction to the coefficient Jy of the
geopotential also was determined for further study of its time variations. It
is known that SLR observations made in different stations are of quite various
quality. Properly down-weighted or rejected, the observations of poor quality
do not distort the resulting estimates. In fact, only few stations of the last
generation provide the overwhelming volume of high precision data that affect
the results.

As an example, from the typical set of the observations of LAGEOS 1 of the
year 2000, the following parameters have been derived:

e dynamical Love number kg,

e monthly corrections to J (13 unknowns),

e weekly corrections to six elements of the satellite and two empirical pa-
rameters (52 x 8 = 416 unknowns),

e yearly corrections to the coordinates of 99 stations (295 unknowns).

Thus, the total number of the estimated parameters for this year is 626.
Values of the longitudes and latitudes of several fiducial stations (which provide
the bulk of accurate observations) have been fixed to prevent degeneration of
the normal matrix due to correlations with the elements of orientation of the
satellite orbit. The software complex ERA for ephemeris and dynamical as-
tronomy was applied while constructing the numerical theories of the orbital
motion, calculating the theoretical distances to the satellites and processing the
condition equations. The current DOS and Windows versions are available from
the anonymous FTP server quasar.ipa.nw.ru/incoming/era. All calculations are
carried out in accordance with the recommendations of IERS 2003 conventions
(McCarthy, Petit, 2004). The only difference in the dynamical equations of
the satellite motion is making use of the close form () for the corrections dci,
dsd caused by the fluid core. We will show that this approach is equivalent
to that recommended by IERS but is more convenient because the functional
dependence of the perturbing forces on k¢ is presented in explicit form.
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Table 1: WRMS errors o of the post-fit residuals (mm)

LAGEOS 1 LAGEOS 2

Year | Ngps Nger  o(mm) Nops Nger  WRMS (mm)
1988 | 67414 3058 22

1989 | 64030 3411 22

1990 | 77951 2721 22

1991 | 54981 3518 22

1992 | 59715 6073 24 13683 863 21
1993 | 81398 7665 22 78873 7128 22
1994 | 65370 4990 27 66827 4557 21
1995 | 53463 4353 24 52153 3183 20
1996 | 52725 4196 23 52244 7904 23
1997 | 50404 3336 22 53516 3688 17
1998 | 65010 5361 19 60819 3298 17
1999 | 71788 4693 23 66520 3415 18
2000 | 61888 4122 23 63158 2362 19
2001 | 71839 4060 19 70449 3083 19
2002 | 70780 2503 21 64011 2217 18
2003 | 74969 2379 19 74613 2798 19

3 Results of data processing

3.1 Dynamical Love number kg

Applying the method described above, we have obtained the set of 16 yearly es-
timates of k¢ from the observations of LAGEOS 1 (1988-2003) and 12 estimates
from LAGEOS 2 (1992-2003). They are presented in Fig.1 (the black circles
correspond to LAGEOS 1, the hollow ones to LAGEOS 2). Generally, all the
estimates are in a very good accordance (the only exception is the LAGEOS 1
result for the year 1995 which evidently drops out and thus has not been used).
From this set, the following averaged value of the dynamical Love number is
derived

kS = 0.0595 £ 0.0007

that statistically differs from the theoretical a priory value k4 = 0.063 given in
(Moritz, Muller, 1987).

Fig.1 demonstrates also an out-phase oscillation with the period 18.6 years
and the amplitude 0.006440.0011. Probably, that is evidence of large dissipation
in the fluid core. Note that parameters of the dissipative effects in the fluid core
recommended by IERS standards are purely theoretical, and their numerical
values have not yet been verified by observations.



Figure 1: Yearly estimates of dynamical Love number k¢
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For checking a possible dependence of kg on its starting value, the observa-
tions of an arbitrarily chosen year were processed with the zero starting value
of k§. After several iterations, the resulted estimate appeared the same.

Note that in the methodically correct approach, the standard ”static” Love
number k5 should also be estimated from the analysis of SLR data. At present,
the most accurate and reliable estimate of ko might be obtained from the anal-
ysis of geodetic VLBI observations. Using these data, the following consistent
estimates have been derived: ko = 0.2788 4+ 0.0011 (Shirai, Fukushima, 2001)
and ke = 0.27272 £ 0.00036 (Krasinsky, Vasilyev, 2006) which are significantly
less than the adopted value ko = 0.3. The error of this value may distort results
of processing the SLR data.

3.2 Periodic variations of the coefficient J, of geopotential

Fig.2 presents the monthly corrections to Js. The noticeable positive trends
means that the a priory value J, = —26 x 107'2 /year used in our calculations
should be considerably diminished. When comparing Fig.2 with the analogous
plots in (Cheng, Tapley, 2004) and (Cox et al, 2005) it is necessary to bear in
mind that Fig.2 presents corrections to the assumed IERS value of Jo while those
in the cited works correspond to the zero value of it. More details concerning
the value Jg are discussed in the next section.

Methodically correct estimates of J, may be derived only simultaneously
with determination of cosine and sine coefficients of the main harmonics of the
trigonometric polynomial approximation of J,. These are the annual harmonics

. . (0.5 4(0.5) : Q Q
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connected with the period 18.6 year of revolution of the lunar node €2, and the
empirical harmonics Agi)s, ASg with the period of 3 year. We also estimated
the correction dJ2(0) to the value J for 2000.0. Four solutions are obtained
for different sets of the estimated parameters (see Tab.2). The first column of
Tab.2 specifies parameters under estimation, others give their estimated values.
For the secular trend, there are given both the correction dJs to the a priory
value —26 x 10712 /year, and the full value J,.

Tab.2 demonstrates that the estimates of the annual and semi-annual har-
monics are robust and only slightly depend on the solutions. For the annual
oscillations, the results can be compared with those by other authors. The full
amplitude of the annual oscillations is (229 4-23) x 10712 in accordance with the
value 300 x 10712 taken approximately from Fig.1 of (Cox et al., 2005). Similar
results are obtained in a number of other works; for instance, in (Cheng, Tapley,
2004) the seasonal amplitude is 290 x 1072 (no error is given). The phases of
the oscillations also agree: the negative minimum in January and the positive
maximum in July. The amplitudes of the semi-annual oscillations are rather sig-
nificant and comparable with those of the annual ones. The derived amplitudes
of the semi-annual variations are consistent with the results published by other
authors. For instance, Table 1 of paper (Nerem et al, 2006.) gives the estimated
cosine and sine amplitudes of the semi-annual variations as —2.41 x 107'° and
0.78 x 10710 in accordance with our findings (see Table 2).

The solid curve in Fig.2 presents Solution 4 (with maximal number of esti-
mated parameters). Fig.2 shows that the seasonal variations cannot be described
as a simple harmonic oscillation but have more complex structure. Namely, they
keep near constant value from the beginning of every year till August when a
sharp maximum takes place, and then decrease up to the end of the year. The
plot given by Fig.2 is very similar to the intra-annual variations of Jo presented
by Fig 3(a) of (Moor et al. 2006) and derived from Lageos 1,2 data for the
time span 1998-2004. Such behavior is a consequence of the large value of the
semi-annual amplitude. This feature of the intra-annual variations qualitatively
agrees with Fig.3 of paper (Lemoine et al. 2006) where they are presented for
the interval 2000-2007 being derived from SLR data for 9 satellites combined
with DORIS data. Note that Fig.3 in (Lemoine et al. 2006) presents variations
of the coefficient cog = —Js. It is interesting that Fig.2 of the same paper does
not demonstrate the fine structure of the intra-annual variations, probably be-
cause time-intervals between the consequent samples are two months (though
the caption indicates one month, probably erroneously). With so low time res-
olution, the fine structure of the intra-annual variations cannot be discerned.
Supposedly, this fine structure is due to the seasonal asymmetry of ice cover de-
veloping in the southern and northern semi-spheres. For a more detailed study
of these variations, Fig.3 presents them vs. JD (mod 365.25) after removing the
secular and long-periodic variations taken from Tab.2. Beside the maximum in
August, this plot demonstrates also and 1 ong-periodic variations taken from
Tab.2. Beside the maximum in August, this plot demonstrates also two small
minima at April and November. Here only the LAGEOS 2 results have been



Figure 2: Corrections to the nominal Jo (for the adopted jg) in 10710

used as the more accurate ones. The bars present statistical errors obtained
after averaging 13 groups of the monthly estimates Jo for all the years.

In Solutions 3 and 4, the sine and cosine components of the oscillation with
the period 18.6 years have also been estimated (with the resulted WRMS errors
considerably decreased). The nature of the empirical oscillation of the 3-year
period estimated in Solution 4 is unclear. We tried several empirical long-
periodic harmonics but statistically significant amplitudes were found only for
the 3-year period.

Fig.2 demonstrates that the positive outliers correspond to the August spikes.
It means that the values of these sharp spikes vary with time and cannot be
presented by the simple model as the sum of the annual and semi-annual oscil-
lations. Probably, this effect should admit some geophysical interpretation.

In the last two lines of Tab.2, the WRMS errors of the residuals are pre-
sented (both for LAGEOS 1 and LAGEOS 2). Note that the WRMS errors for
LAGEOS 2 are considerably smaller than those for LAGEOS 1. Formal erors
of J, appeared to be by order less than the range of the fluctuations of dJ,, and
so could not be presented by error bars in Fig.2.

3.3 Secular trend J, and the post-glacial rebound

True value of the trend J; is quite important as for practical applications as for a
geophysical interpretation. Indeed, the estimate Jo = —2.6 x 10! /year is still
recommended by IERS standards (McCarthy, Petit, 2004) as experimentally
confirmed effect of the post-glacial rebound, despite that this trend has greatly
diminished or even completely vanished for the SLR data after 1998 (Cheng,



Figure 3: Intra-annual variations of Jo vs. JD (mod 365.25) (in 10~ 11)
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Table 2: Models of variations of Ja, four solutions (in 10712)

| | 1| 2 | 3 | 4 |

d.J5(0) 218(16) | 215(14) | 103(31) | 77(33)
d.Jy /year 33(3) 35(3) 18(7) 13(7)
J year 7(3) 9(3) 8(7) | -13(7)
Acos -172(19) | -174(17) | -184(15) | -183(15)
Agin -151(19) | -150(16) | -164(15) | -168(15)
ASY 66(16) | 67(15) | 66(15)
A0 167(17) | 168(15) | 168(15)
AL 154(39) | 181(40)

e -102(20) | -98(20)
A8 43(15)
AP -39(16)
WRMS, LAGEOS 1 285 255 245 235
WRMS, LAGEOS 2 195 155 135 135




Tapley, 2004). For instance, Fig.3 in (Chao, 2003) shows that the accumulated
error of Jy becomes intolerably large at present epoch if one applies the adopted
value of Jo. In recent publication (Cheng, Tapley, 2008), the authors insist
that this value is still valid and explain the clearly seen deviations of Jo from
observations after 1998 by some decadal variations, making stress on the effect
of El Nino. On the other hand, the independent analysis carried out in Goddard
Space Flight Center (Lemoine et al, 2006) demonstrates that the time-behavior
of J, was rather stable since 1976 up to 2007 with no noticeable change of it after
1998. The resulting value J; = —1.32 x 10711 /year is twice less than that of the
IERS standards based on the works by Cheng and Tapley. Our analysis of SLR
data confirms this conclusion. In Solution 4 (maximal numbers of the estimated
harmonics in .J;) we have obtained the estimate Jo = (—=1.3+0.7) x 10~ /year
which is consistent with the result of (Lemoine et al, 2006). Unfortunately,
due to the comparatively short 16-yearly time-interval of the data used, the
correlations of the amplitudes of the long-term variations with the secular trend
are rather large. That is why the statistical error of our estimate of Jo is
comparatively large. In any case, we may state that our value of Jo rules out
the rate —2.6 x 10~!! /year recommended by IERS standards.

4 Concluding notes

1. From the practical point of view, the most important result of this study is
the conclusion that the derived secular trend j2 is consistent with the result of
(Lemoine et al, 2006) confirming that the value of this trend recommended by
IERS standards is twice too large. To our opinion, poor predictability of the
variations of Jy due to inter-annual oscillations of unclear origin necessitates
monitoring of the current values of J and disseminating the results for practical
applications, just as at present it is done for the Earth’s orientation parameters.

2. The intra-annual variations of Jy are not a simple harmonic oscillation;
see Fig.3. Probably, the sharp spike in August is due to asymmetric seasonal
developing of the ice regime in the southern and northern semi-spheres. This
problem deserves thorough study and a geophysical interpretation.

3. The derived estimate k¢ = 0.0595 + 0.0007 statistically differs from its
theoretical value k9 = 0.063. To our knowledge, that is the first experimental
determination of this parameter.

4. For independent calculation of various tidal effects caused by the fluid
core, it is desirable to provide users by numerical values of the angular velocities
v1,v2 of the fluid core. To avoid somewhat bulky analytical manipulations
directly in the text of present paper, derivation of the analytical expressions for
v1, U9 is transferred into Appendix.



5 Appendix. Dynamical Love numbers

It is known that the positions of sites on the Earth’s surface are displaced by
the pole tides of two types. Those of the first type are caused by the motion
of the pole of the Earth as a whole, the corresponding tidal amplitudes being
proportional to the Love numbers hy, lo. The pole tides of the second type
are caused by the differential rotation of the fluid core relatively to the mantle;
their amplitudes are proportional to the so-called dynamical Love numbers hd,
19. The pole tides of the both types also contribute to the tesseral coefficients
c3, s3 of the geopotential. Putting aside the Chandler’s free wobble of the pole,
these contributions are of near-diurnal periods with the amplitudes proportional
either to the static ”potential” Love number k3 or to the dynamical Love number
kg, the latter effect being the largest. A theory of the dynamical Love numbers
is given in monograph (Moritz and Muller, 1987).

As the fluid core brings about diurnal oscillations of the coefficients ¢} and
s3 of the geopotential, it gives rise to rather significant long-term and secular
perturbations in the elements of the observed satellites (mainly in the node) thus
making it possible to improve the adopted theoretical value of the scaling factor
k¢ of these perturbations. It is commonly assumed that the fluid core rotates
relatively to the mantle with the angular velocity T = (v1, v2,0), the equatorial
components vy, ve being given by the theory of the Earth’s rotation. We denote
w = (w1,we,ws) the vector of the angular velocity of the Earth as a whole. For
calculating the potentials dW, induced by the centrifugal acceleration of the
differential rotation of the fluid core, the velocity of any point 7 in these two
domains within the Earth (the mantle and fluid core) may be presented either
as W X T or as (@ + U) x T, respectively. Then the centrifugal acceleration W
within the mantle may be presented as

W=-wx (@xT)=-w(F,w) +Tw?,
while in the fluid core the corresponding expression has the form
W=—@+7) x [@+7) x7] = —(@+7) [(,©) + (7, 0)] + 7w+

with the standard notations (p,q) and P x g for the scalar and vectorial products
of two vectors D, .

The terms along the vector T in these expressions do not deform the incom-
pressible Earth and may be disregarded. Then ignoring the second-order terms,
we can set W = grad W, the potential W at the right part being given by the
expressions

L7 o2
W—{ (T, @0)*, R.<r <R, 2)

—5(7,w)? — (121 + vow2)w3w, T < R,

with the notations R, R, for the radii of the Earth and its fluid core, respectively.
Adding the spherically symmetric term %rQwQ to the right part (that does
not affect the distribution of the density within the incompressible Earth) and
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denoting cos S = (p,w)/w, p = T/r, we can present the potential W in each of
these two domains within the Earth as the following combinations of the zonal
and tesseral harmonic functions:

W= —2w2r?PY(cos S), R. <r < R,
- 2w?r?PY(cos S) — (viz1 + vax2)z3wW, R < R,

In accordance with the general theory of Love numbers, action of the per-
turbing spherical harmonics deforms the Earth’s interior and the resulting de-
formations induce the additional potential dW given on the Earth’s spherical
surface (of the mean radius R) by the expression

ki
AW|R = —§w2R2P20(cos S) — kIR (v1p1 + v2p2)paw, (3)

in which ks, k¢ are the standard static and dynamic Love numbers, p = 7/r =
(p1, p2, p3) is the unit vector to the probing point out of the Earth. In the outer
space, the first term at the right part generates the additional potential dW,

1, SR>,
dw, = —gkzw 76—3P2 (cosS), r> R (4)
which is the result of the tides aroused by rotation of the Earth as a whole,
while the second term (proportional to k¢) brings about the tidal potential dWW,
caused by the differential rotation of the fluid core. The potential dW, has the
form of the second-order tesseral harmonics:

R5
dw, = —kgdr—3(v1p1 + vap2)psw, T > R. (5)

For our aims, the zonal part of the potential [ ) may be ignored as it gen-
erates nothing but the permanent tidal component of Js. Thus retaining only
the tesseral terms (and keeping the old notation dW,.) we obtain

R5
dw, = —sz_g(wlpl +wap2)paw, > R. (6)

Both these potentials, dW,. and dW,, should be added to the geopotential
V' which may be written in the standard form

_ Gm
T or

v

k
(?) P,g(cos 5)(0,’C cosj/\—|—s£ sin j\), (7)
k

where 6, A are the latitude and longitude of the probing point, P,g are associated
Legendre functions. In order to present potentials (Bl) and (6]) in the similar form,
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the combinations p; p3, p2p3 also should be expressed in terms of the associated
Legendre functions:

1
pips = cosdsindcos\ = =Py (cosd)cos A,

1
p2ps = cosdsindsin A = §P21(cos ) sin A,

and then we obtain

2 3
dW, = —kg (%) (g) Py (cosd)(vy cos A + vg sin \).

Defining the so-called secular Love number kg in the standard way

Gsz

Fs = 3 pag

the expression for dW, may be re-written in the form

2 d
k
AW, = _GTm <§> (k—2) Jo Py (cos 8)(vy cos A + vg sin \) /w. (8)

Such a presentation of the potential dW,, demonstrates that its contribution
into geopotential (7)) has the form of corrections dc}, dsi to the coefficients ci,
s3. These corrections may be written in the simple form:

del) kg (v

The analogous expression is valid for the corresponding corrections dc3, ds3

proportional to ks:
del\ _1k2 [un
(ds%) = —Jow % \ws ) (10)

In this relation we only account for the components due to the forced vari-
ations of wy, wy (the so-called Oppolzer’s terms) omitting the free Chandler’s
oscillation which is of much longer period. Hereinafter, the components of the
near-diurnal oscillations in ¢3, si proportional to ko will be referred to as the
Oppolzer’s tides.

One can see that the variables v, vo and wy,ws in the right parts of relations
@) and ([0 indeed oscillate with near-diurnal periods. For instance, the angular
velocities wy,ws in expression () may be presented in terms of the sidereal
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time s and the time derivatives of the slowly changing angles of precession ¢
and nutation 6 by the Euler’s kinematic relations:

w = 0 cos s + dsinfsin s,
wy = —Osins+ ¢sinfcoss. (11)

In analogous way, the components vy, vs of the angular velocity of the fluid
core may be transformed from the Earth-fixed frame into its components ny, ns
in the inertial frame:

v, = N1 COS S + ngsin s

vg = —njsins -+ nycoss. (12)

Slowly changing variables n1,no can be expressed in terms of the nutational
coefficients (and of the precession rate) making use of the differential equations
of rotation of the deformable Earth with the fluid core; see (Moritz and Muller,
1987).

If dissipation in the fluid core is taken into consideration, the variables vy, vy
should be calculated for the delayed time ¢t —7. With all necessary accuracy, the
linearized relations v1(t — 7) = v1(t) — 701 and va(t — 7) = v1(t) — 702 may be
applied. Moreover, to calculate the time-delayed variables v1, vs, one can take
into account only the time delay in the sidereal time s replacing in expression (@)
v1 by v1 —v2d and ve by vo+v16 (§ = Tw is the tidal phase lag). The dissipation
brings about out-of-phase terms in the trigonometric presentation of the tidal
effects. In the IERS standards, they are given for a theoretical value of the
phase lag which, unfortunately, has not yet been verified by satellite data.

Perturbing potential (2]) of the centrifugal accelerations brings about not
only the near-diurnal tidal variations (@), (I0) of the tesseral coefficients c3, s3
of the geopotential, but also near-diurnal displacements of sites: dH, dN, dE in
the radial, northern and eastern directions, respectively. In our notations, the
displacements caused by the fluid core may be written in the form

hd

dH = -R (k_2) Ja 8in 20(vy cos A + ve sin \) /w,
ld

dN = -R (k_2> Ja cos 26(vy cos A + vy sin ) /w, (13)
ld

dE = -R (k—2> Josin §(—vy sin A 4 vg cos \) /w,

where A, § are the longitude and latitude of the site, hg, lg are the dynamical
Love numbers.

The tidal displacements due to the centrifugal potential of the Earth as a
whole may be obtained replacing the dynamical Love numbers h4, I¢ by the
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static Love numbers hs, [o and the angular velocities v, vy of the differential
rotation of the fluid core by the absolute angular velocities w1, ws. Broken into
the trigonometric series of the fundamental arguments, the corrections (@), ([I3)
are interpreted in the IERS standards (McCarthy, Petit, 2004) as the effect of
the frequency-dependence of the Love numbers ko (or rather ks1), ho and Is.
It will be shown that the explicit analytical expressions of these trigonometric
series have the following simple form (the proof is given at the end of Appendix):

d
dH = -R (%) Ja 8in 26 Z(C,, cos A + S, sin A),
ld
dN = -R (k:_2> Ja cos 262(0,, cos A + S, sin A), (14)
ld
dEE = —-R (k_2> Jo sin5Z(—C,, sin A + S, cos \),
dC% o —1 kjg CV
(ds%) = —Jow (k— ZV: s ) (15)
where
Sy = QUsin(s + fy) +Q, sin(s — fu), (16)
C, = Qfcos(s+ fy)+Q, cos(s — f) (17)
for v # 0,

So = Qpsin(s)
Co = Qocos(s),

s is the sidereal time, f, is the nutation argument of the frequency v in the
nutational series given by the expressions

0 = Y 80, cosfy, (18)
v#0

= ) ysinfy, (19)
v#0

60,01, are coeflicients of the nutations in inclination and longitude, and the
coefficients Q, Q,, Qo are expressed in terms of 66, d1),, by the relations

QF = (06, —sinByd,)q,, (20)
Q, = (00, +sinbpdh,)q—,, (21)
Qo = —Lsindo(1— k), (22)

(&
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with the notations
v

Qv = Vo + V(l - ’i)v v 7£ Oa (23)

P (i—f)al, (24)

p, a, V. being the precession constant, the ratio of the moment of inertia of the
fluid core to that of the Earth as a whole and the Free Core Nutation frequency,
respectively.

The corresponding effects of the Oppolzer’s tides have the same form and
may be obtained replacing hg, 1§, k¢ by ha, l2, ks and making use of the following
expressions for the coefficients g, Qo:

Qv =
QO = —=sin 90 .
w

We prefer the close form (@), (I3) of the near-diurnal tidal effects instead of
that recommended by TERS standards because, firstly, it is much simpler, and,
secondly, this formulation explicitly demonstrates that the variations of ¢3, s3
and the site displacements depend on the same combinations of the variables
vy, vy (or wy, we) and differ only by constant factors. Another advantage of
this formalism written in the close form by relations @), ([I0), (I3) is that it
may be applied not only with the analytical theories like TAU 2006 but also
with numerical theories of the precession-nutation motion like that described
in (Krasinsky, 2006), (Krasinsky, Vasyliev, 2006). This approach guarantees
the consistency of calculations, unlike the formalism of IERS standards which
suggests four different trigonometric series for four tidal effects under consider-
ation. It is not clear how the recommended form of the near-diurnal tides (in
which the Oppolzer’s tides are not separated from the tides proportional to the
dynamical Love numbers) may be applied varying numerically the dynamical
Love numbers in order to calculate the corresponding partial derivatives.

It is easy to see that the numerical values of the diurnal tides presented in the
form of trigonometric series ([[4)—-([24) practically coincide with those given in
the IERS standards (McCarthy, Petit, 2004). As an example, in Tab.1 we give
the amplitudes R, (in mm) of the near-diurnal radial displacements calculated
with the above expressions as well as the corresponding numerical values taken
from IERS standards, see Tab. 7.5a of IERS Technical Notes 32 (McCarthy,
Petit, 200). These displacements depend on the dynamical Love number hg by

relations
REN o (QF
R, )~ TP\ Qy )

where QF, Q,, are given by expressions ([6)-(24), and the value of ¢ has been
taken in such a way that the largest amplitude (of the tidal constituent K;
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Table 3: Coefficients d R, of radial displacements (mm)

R, R°PP IERS Period | I' F D Q

days

-0.04 -0.04 -0.08 913 1 0 2 0 2
-0.06 -0.04 -0.10 1366 0 0 2 0 1
-0.28 -0.22  -0.51 1370 0 0 2 0 2

0.04 0.02  0.06 2760 1 0 O O O
-0.05 -0.01  -0.06 12175 0 -1 -2 2 -2
-1.20 -0.10 -1.23 18262 0 0 2 -2 2
-0.23 -0.01 -022 679838 0O 0O O O -1
11.72 0.28 12.00 000 0 0 O 0 O

1.69 0.04 1.73 679838 0 0O O 0 1
-0.70 0.00 -050 -365.30 0 -1 O O O
-0.14 0.00 -0.11 -18262 0O 0 -2 2 -2

for which »=0) in the IERS standard would be equal to the sum of the corre-
sponding terms proportional to h4 and hy. Tab.1 presents the coefficients R,
giving not the frequencies v but by the corresponding periods (providing also
the integer coefficients in the linear combinations of the fundamental arguments
I,U, F, D, Q). As the periods are given with their signs, the upper index in
the coefficients R, or R, has been omitted. One can see that in the domain

of the positive high frequencies v, the contribution of the Oppolzer’s tides (the

column RCPP )) is comparable with the effects of the fluid core. Tab.1 demon-

strates that the IERS coefficients indeed are the sums of the two components:
those proportional to k§ and to ks, the first component being the largest. (The
coefficients of TERS and ours in the two last lines slightly differ). Analogous
comparison with IERS standards were carried out also for the corrections dci,
dsy. The corresponding Fourier coefficients differ only by a constant factor
from those of Tab.4 and fixing properly this constant, a good agreement has
been reached again. However, now we are interested in the absolute values of
the coefficients which depend on the corresponding dynamical Love numbers.
Serious discrepancies were found in this case. Indeed, for the maximal coeffi-
cient (the constituent K;, the zero frequency v) calculated with the a priory kg
we have obtained the value 589 x 1072 which considerably exceeds the value
470 x 10712 of IERS 2003. Making use of the new estimate k9 = 0.0595 de-
rived in this work from the SLR data gives us the value 546 x 10712 of this
coefficient which diminishes the discrepancy but still significantly differs from
the IERS value. These considerations reinforce our conclusion on the necessity
of simultaneous estimating as J, as kg.

Now we derive in brief the expressions given above for the coefficients C,,
S, of the near-diurnal tidal effects. We will express the pole coordinates vy, ve
of the fluid core in terms of the coefficients of the adopted nutation 66, dp. For
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the beginning, we restrict ourselves with the Poincare’s model in which all tidal
effects in v1, vo are disregarded. As the adopted nutation theory has been con-
structed in the framework of a more realistic Earth’s rotation model which does
account for the perturbations caused by the non-zero Love numbers, in this way
the indirect perturbations of this type are automatically accounted for. Though
a more refine approach might be developed in which the explicit dependence of
v1,v2 on the Love numbers would be also considered, only the main effect of
this sort is taken into account in @Q;} because the resulting corrections are small
enough. The following notations will be used:

1. uw = uy +ius and v = v + fvy are complex coordinates of the pole of the
Earth and that of its fluid core,

w is the angular velocity of the Earth,
A, C are equatorial and polar moments of inertia.

A., C. are those of the core,

e=(C—-A)/A, e. = (C.— A.)/A. are dynamic flatness of the Earth and
that of its fluid core,

6. a=A./A.

o W N

In the Poincare’s approximation, the differential equations describing the
time behavior of u, v may be written in the form (Poincare, 1987):

U = duew —av —iav+ L (25)

= —iv(l+e)w — 1, (26)

where i = v/—1 and L = Ly + iL; is a complex variable presenting the torques
caused by outer forces. Transforming these equations into the normal form in
which the time-derivatives are in the left side, we obtain

e €. L
) 2
ul_aw—l—wl_aw—l—l_a, (27)

c . L
T —iv(l—i—le )w—m € w- . (28)

11—« 11—«

U = 1

Here the torque L depends on the three Euler’s angles: 6 (the angle of
nutation), ¢ (the angle of precession) and ¢ (the angle of the axial rotation).
We can identify the variable ¢ with Greenwich Sidereal Time s.

Supplementing these equations with the Euler’s kinematic relations (T
rewritten in the form

u; = (¢sinfsins 4+ 6 coss)/w,
uy = (Ysinfcoss —hsins)/w,
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we obtain a close system of differential equations. The Euler’s ¢ relations may
be presented in the equivalent complex form:

u = D exp(—is), (29)
where
D = (0 + it sinf) Jw. (30)

The torque L in equations ([21), (28]) depends on the Euler’s angles in the
following way:

L = exp(—is)M(0,) (31)

where the function M is independent of the sidereal time s.
Defining new variable ) by the relation

v =exp(—is)Q (32)

we can consider D, @ as new variables and express differential equations (27]),
[28) in terms of these variables. Calculating the time derivatives of the both
sides of identity ([29), we may ignore the time-dependence of the coefficient D.
In the same approximation, $ ~ w and we have

i = (—iwD + D)exp(—is) = —iwD exp(—is).

With definition [BI]), equations (27), (28) may be written now in the following
form:

ae. M

D = —-Q +i—,
11—« w

O = —iQ=Y _ip-“ _m
11—« l1—«

Eliminating the complex function M from these equations, we obtain (ne-
glecting the terms of the second order) the sought-for relation that ties the
variables ) and D

Q = —iQu, + iwD, (33)
with the notation v, for Free Core Nutation frequency:
Ve = €cWw.
Let 0N = §0 + id¢ sin 6y be the complex nutation variable. Due to identity

@0), the variables N and D are connected by the relation
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D=2 i ne,, (34)
w w

where the precession parameter p > 0 is the coefficient of the linear trend in
the precession angle ¢ (we use the right-hand coordinate frame in which the
precession motion is negative). The nutations §6, 61 may be presented in the
form of the trigonometric series (I8), (I9). In fact, the adopted nutations are
referred to the instant coordinate frame, while we need the nutations in the fixed
system of J2000. With the accuracy needed to calculate the small near-diurnal
tidal effects, the difference may be ignored. The approximations f,, = v may be
used due to the same reason. Now we present the complex nutational variable
ON in the form of the trigonometric series:

ON =" (N, exp(if,) + N, exp(—if,)) , (35)
v#0
where
NS = %((59u+sin6‘0(51/1), (36)
N, = %(69U—sin6‘061/1). (37)

The solution of equation ([B3) for @ may be constructed in the similar form:

Q=> (QFexp(if,) +Q, exp(—if.)) + Qo. (38)
v#0

Due to equations ([34)—(3T), we can write the coefficients Q;f, @, and Qo as

14
Qj = v+ Nlj_7 (39)
_ -
Q, = WNU ; (40)
Qo = —sineoyﬁ. (41)

Substituting relation @91 into (I0), (I2), we obtain the tidal effects
under study in the form of relations (I5)—(24) for the Poincare’s model (for
which the constant x defined by relation (24)) is equal to zero). The Poincare’s
model is the first approximation to the adopted model based on the so-called
SOS equations by Sasao, Okubo and Saito; see (Moritz and Muller, 1987).
The next approximation (which is sufficient for our aims) may be obtained by
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adding to the right part of equation (26]) the term xL. Repeating the above
transformations with the modified in this way equations (25, (26]), we obtain
the analytical expressions ([20)—(24) given earlier without proof. In fact, for
calculations of the present paper we have used not these analytical expressions
but more accurate values ni, ng of the angular velocity of the fluid core (in the
inertial coordinate frame) obtained by numerical integration of the SOS-type
differential equations described in (Krasinsky, 2006). The analytical expressions
were used just for a control, in order to be sure that the calculated corrections
are close to those given in IERS standards.
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