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Modern higher{precise theories of motion of special Arti�cial Earth Satel-

lites (geodetical, navigational) consider all forces which one may describe with at

least 30% precision, including so exotical ones as a reaction of photon 
ux due to

radiowave{interchange with ground stations. Accuracy may be increased drasti-

cally when we con�ne ourselves by the description of relative motion of a pair of

satellites close to one another. Here we regard similar satellites moving along the

same track, i.e. the set of subsatellites points. The physical reason for accuracy

increase is rather simple: both satellites undergo the same perturbations with a

little shift in time only.

Let pass to more strict formulations. Denote F

1

forces per unit mass depend-

ing on position and velocity of a satellite with respect to the solid Earth, but

not on time explicitly. Such are attraction of the solid Earth in Newtonian and

relativistic approach, Lorentz force, main part of the air drag. Let F

2

are all

other forces which we consider as disturbing ones. At the �rst step we may ne-

glect them. Then in the frame related with the solid Earth we have di�erential

equations of motion of the form

�
r = F

1

+ J ; (1)

J being the sum of centrifugal and Coriolis forces of inertia independent of t as

well.

Denote r

1

(t) a solution of (1). Due to the autonomy of (1) r

2

(t) = r

1

(t + �)

is also a solution for any constant shift � . Solutions r

k

(t) correspond to a pair of

satellites moving along the same track. The vector r(t) = r

2

(t)� r

1

(t) describes

relative position of the second AES with respect to the �rst one.

Note that the centrifugal force and especially Coriolis one are not very small

in comparison with the main part of the Earth's attraction. That is why one uses

inertial frame as a rule. Denoting corresponding vectors by Greek letters we have

�

k

(t) = A(t)r

k

(t) ; (2)
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A being orthogonal matrix describing the Earth's rotation.

Finally,

�(t) = A

�1

(�) [�

1

(t+ �)� �

1

(t)] +

�

A

�1

(�)� E

�

�

1

(t) ; (3)

E being a 3� 3 unit matrix.

In case � is small so are the di�erences �

1

(t + �) � �

1

(t) and A

�1

(�) � E .

For testing the smallness it is better to use dimensionless quantities n� and n

0

�

equal to multiplied by � satellite's mean motion and angular velocity of the

Earth's rotation, respectively.

The expression in brackets in the formula (3) represents a small di�erence of

close quantities. To avoid the loss of accuracy we may use Lie { series represen-

tation in powers of � for the solutions of similar to (1) di�erential equations in

the inertial space. In our case Lie { series in powers of � begins with the �rst

degree term. As to the second term of the sum (3), the di�erence of corresponding

matrices has maximal modulus of eigenvalues equal to 2 sin(n

0

�=2) and is also

small.

We see that errors in �(t) diminish by a factor of n� or n

0

� in comparison

with the errors in �

1

(t).

As to numerical estimations of corresponding errors they depend on the value

of � and, what is more important, on the satellite's orbit we choose. For close

to the Earth's surface AES n� plays the main role whereas for higher ones n

0

�

does. As an example, for an orbit with the semi{major axis a = 7400 km and

eccentricity e = 0:01 we have n = 1:0�10

�3

s

�1

and n

0

= 0:73�10

�4

s

�1

. Choosing

� = 25 s we have n� = 0:025 and simultaneously we guarantee that the distance

between satellites lies in the interval from 160 to 200 km.

Note that for satellites higher than stationary ones the approach we deal with

looses its advantages since the luni{solar disturbing forces become considerable.

Meanwhile they depend explicitly on time.
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