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This paper considers the planar problem of two planets orbiting a star with pe-

riods close to a commensurability. The problem is stated in Hamiltonian form, in

heliocentric canonical variables, and is reduced to two degrees of freedom through

the elimination of all non{critical terms involving the mean longitudes. In the

adopted approximation, the reduced Hamiltonian includes the main resonant and

secular terms up to fourth order in the eccentricities. In the case of �rst{order

resonances (Callegari Jr. et al, 2002) the second{order critical terms are also kept

in the model. Numerical tests have shown good agreement between the solutions

of the model and the solutions of the correspondent exact equations of a two{

planet system, at least as far as the eccentricities are kept small. In the domains

studied here, the eccentricity of the planets generally remains below 0.05 in the

resonances of higher �, reaching 0.1 only in those of lower � (� is the ratio of the

semimajor axes of the 2 planets.)

The dynamics of the resulting system can be studied through the construction

of surfaces of section for a large set of initial conditions (eccentricities and critical

angles). Besides, the FFT spectrum of all solutions is calculated and the number

of peaks above a suitably chosen limit is used to determine the complexity of

the solution (see Michtchenko and Ferraz-Mello 2001a). The results from the

FFT spectrum are complementary to the surfaces of section in the study of the

dynamics. As the Hamiltonian has two degree of freedom, two main independent

frequencies of the system are expected to be found in the Fourier spectrum, as

well as higher harmonics and beats of both frequencies. In this way, we may

class the solutions as regular when the FFT spectrum shows a small number of

harmonics (peaks) and chaotic when the structure of the FFT spectrum becomes

complex and the number of peaks exceeds a given limit.

These two techniques were applied to three real 2-planet systems whose mem-

bers have semimajor axes such that they are in resonance and are close to some

important near resonant systems:
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(a) the system Sun-Jupiter-Saturn, near the 5:2 resonance. (� � 0:54);

(b) the system Sun-Uranus-Neptune, where both planets orbit the Sun near the

2:1 resonance (� � 0:63);

(c) the system formed by the pulsar PSB B1257+12 and its planets B and C,

near the 3:2 resonance (� � 0:763).

In order to explain the results obtained on the dynamics of these systems

let us de�ne the critical angles. Let �

i

; $

i

; denote the mean longitudes and the

perihelion longitudes of the inner (i=1) and outer (i=2) planets, respectively. The

critical angles are �

i

= (p+1)�

2

�p�

1

�$

i

(i = 1; 2) (p = 1 for the 2:1 resonance,

p = 2 for the 3:2 resonance and p = 2=3 for the 5:2 resonance. The long period

(secular) variable is �$ = �

1

� �

2

:

The systems are studied following the technique proposed by Tittemore and

Wisdom (1988) and uses two parameters: the energy and one parameter � mea-

suring of the distance of the system to the exact resonance (which is equal to zero

at the exact resonance). This parameter is de�ned in terms of constants appearing

in the expression of the Hamiltonian. It is roughly equal to 5n

2

� 2n

1

� _$

1

� 2 _$

2

in the study of the 5:2 resonance and (p + 1)n

2

� pn

1

� _$

1

in the case of the

�rst-order resonances.

In the 5:2 resonance it was possible to identify several di�erent regimes of

motion. Outside the resonance, the solutions are the well-known secular ones. The

surfaces of sections show 2 periodic orbits, named I and II by Michtchenko and

Ferraz-Mello (2001b), where we have, respectively, �$ = 0 and �$ = �. These

two periodic orbits correspond to four possible stable geometrical con�gurations

of the planets:

� Mode I: the perihelia of the inner and outer planets are aligned in the same

direction (parallel apsidal lines) (�$ = �

1

� �

2

= 0).

� Mode II: the perihelia of both planets are aligned in opposite directions

(anti-parallel apsidal lines), (�$ = �).

In the lower energy surfaces of section, the solutions appear divided in two

modes (mode I and mode II, respectively) formed by motions over two seemingly

regular families of tori enclosing the 2 periodic orbits. The classical classi�cation

of the motions according with the behavior of the angle �$ = �

1

� �

2

leads

to some di�culties well-known in the study of secular dynamics, because the

periodic orbits are not at e = 0. Then, solutions on tori enclosing the origin

and those on tori which do not enclose the origin are kinematically di�erent,

notwithstanding the fact that a bifurcation between them does not exist. The

torus going across the origin, which separates the two kinematically di�erent

motions, is not a true topological separatrix. (Regular tori in both sides of this

separatrix belong to a same regime of motion and form a continuous family.)
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Fig. 1. Two surfaces of section of the 5:2 resonance showing the preserved sec-

ular mode I (A) and the main resonant modes R

ex

and R

in

(B). Taken from

Michtchenko and Ferraz-Mello, 2001b.

The solutions in modes I and II are such that the angle �$ librate about 0 or �

as far as these solutions are close to the periodic orbits. Solutions on wider tori

may show this angle circulating, but this di�erence is topologically meaningless.

Besides, for lower energies, we have to distinguish the solutions corresponding to

systems in both sides of the resonance. When the ratio of the semi-major axes

of Jupiter and Saturn is larger than the exact resonant value 0.54, the angles �

i

have retrograde motion (negative velocity) and when � is smaller than 0.54, the

orbits of Jupiter and Saturn are closer one to another, the angles �

i

have direct

circulation (positive velocity).

As the energy increases, the system reaches the resonance domain and the

solutions of mode II located in the immediate neighborhood of the period orbit

starts librating (both angles �

i

librate { a true bifurcation is reached). The new

regime of motion is named R

ex

(see the �gure). The chaoticity of the motions sep-

arating librating and circulating orbits is clearly seen in the surfaces of section

(the thick curves separating the domains A and B), and con�rmed by the FFT

of the solutions. For energies yet larger (right-hand side section in the �gure), a

secular resonance associated with the relative motion of the perihelia is reached

creating a new bifurcation inside the libration region and the surface of section

shows a new center and a new saddle point. The separatrix emanating from the

saddle point encloses a new regime of motion (R

in

), in the immediate neighbor-

hood of a new stable periodic orbit. The sections were done for a given value of

� (0.02), but the regimes of motion reproduce themselves without modi�cations

for other values of � > 0.

In the case of the Uranus-Neptune-like system the situation is more involving.

Studies done with � = 0:0012 �rst show a behavior very similar to that of the res-

onance 5:2. Far of the resonance, the system is dominated by secular interactions

showing the two regimes of motion (modes I an II) around stable periodic orbits;

as the energy increases, the exact resonant separation of the two planetary orbits

is reached and the solutions of mode II located in the immediate neighborhood
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of the period orbit starts librating (mode R

ex

); for energies yet larger, a secular

resonance associated with the relative motion of the perihelia is reached creating

a new bifurcation inside the libration region and the surface of section shows a

new center and a new saddle point. The separatrix emanating from the saddle

point envelopes a new regime of motion in the immediate neighborhood of the

new stable periodic orbit (mode R

in

). However, from this point on, new regimes

of motion, not seen in the 5:2 resonance, appear. While in the 5:2 resonance larger

energies came to correspond to a deep resonance regime, very regular, in the 2:1

resonance new bifurcation appear in the surface of section. Another feature seen

in the surfaces of section of the 2:1 resonance is that the chaotic zone separating

the domains A and B in the �gure grows and evolves in such a way to completely

envelop the domain A. Periodic orbits at the center of the resonant modes may

show either �$ = 0 or �$ = �. (The two angles �

i

may be librating on the same

side or in opposite sides.) These centers migrate and in some cases they may

cross the origin and change by 180

�

the libration center of one of the �

i

. The

regimes of motion characterized by the coupled libration of �

1

and �

2

around 0;

and libration of �$ = � have the same characteristics of the motions of the two

planets orbiting around the star GJ 876 (Marcy et al. 2001).

The results for 3:2 resonance are very similar to those for the 2:1 resonance.

The analysis of the dynamics of these systems was limited to the search of

symmetrical librations of the angles �

1

and �

2

, that is oscillations of these angles

around 0 or �. Some numerical experiments have, however, shown that asymmet-

ric librations as found by Beaug�e (1994), in which the angles �

i

oscillate around

angles not commensurable with � also exist.
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