Охлаждаемый сверхширокополосный квадратурный направленный ответвитель

© В. С. Черников, Е. Ю. Хвостов, В. К. Чернов

ИПА РАН, г. Санкт-Петербург, Россия

Реферат

Целью данной работы является разработка сверхширокополосного квадратурного направленного ответвителя, работающего в диапазоне 3–16 ГГц, с возможностью охлаждения до температур ~10 К для уменьшения активных потерь и использования в составе высокочувствительных радиоастрономических систем. Применение данного устройства в совокупности с облучателем с ортогональными линейными поляризациями позволяет сформировать правую и левую эллиптические поляризации с коэффициентом эллиптичности не более 3 дБ.

Методика, используемая при разработке, представляет собой проектирование отдельных секций устройства с помощью справочных данных, анализ полноценного устройства путем электродинамического моделирования и векторный анализ изготовленного макета при температурах ~300 К и 10 К. При криогенном охлаждении взяты в расчет характеристики СВЧ-тракта измерительного криостатируемого блока. При разработке корпуса учтены негативные факторы, которые могут быть вызваны эффектами теплового сжатия. Использованы соединения со скользящим контактом и специальная форма корпуса. Для плотного прилегания слоев конструкции предусмотрена система отверстий под винты. Выбран материал с близкими значениями коэффициентов температурного расширения по всем направлениям и сопоставимыми со значением данного параметра для меди.

Представлены *результаты* разработки макета сверхширокополосного квадратурного направленного ответвителя с рабочей полосой 3–16 ГГц и возможностью охлаждения до температуры ~10 К. Из электродинамической модели были найдены параметры топологии устройства и определены оптимальные толщины диэлектрических слоев. В работе приведены результаты измерений характеристик направленного ответвителя при температурах 300 К и 10 К.

Ключевые слова: направленный ответвитель, широкополосная приемная система, круговая поляризация, охлаждение до температуры жидкого водорода.

Контакты для связи: Черников Виктор Сергеевич (cv.sergeevich@iaaras.ru).

Для цитирования: Черников В. С., Хвостов Е. Ю., Чернов В. К. Охлаждаемый сверхширокополосный квадратурный направленный ответвитель // Труды ИПА РАН. 2022. Вып. 60. С. 44–48. https://doi.org/10.32876/ApplAstron.60.44-48

Cooled Ultra-Wideband Quadrature Directional Coupler

V. S. Chernikov, Ye. Yu. Khvostov, V. K. Chernov

Institute of Applied Astronomy of the Russian Academy of Sciences, Saint Petersburg, Russia

Abstract

The purpose of this work is the development of an ultra-wideband 3–16 GHz quadrature directional coupler (hybrid) cryo-coolable up to 10 K. Such cooling ability allows to reduce active losses for use in very sensitive radio astronomic systems. Using the hybrid with a bi-linear polarization antenna enables to create signals with elliptical polarization with axial ratio less than 3 dB.

The applied *methods* were the design of separate coupler parts based on reference data, electrodynamic analysis of the device and vector measurements of the fabricated model at 300 K and 10 K temperatures. The parameters of microwave components of the cryogenic unit were accounted. To eliminate negative effects of thermal compression a special casing shape was developed and sliding contact connections were developed. For tight adherence the coupler was provided with a bolthole system. A dielectric material was selected as a suitable stuff which had close values of thermal expansion directional coefficient comparable with the value of such characteristic for copper.

The work provides the development of an ultra-wideband 3–16 GHz quadrature directional coupler (hybrid) cryocoolable up to 10 K and measurement of the hybrid parameters at 300 K and 10 K temperatures. The topology of the device and thickness of the dielectric layers were derived from the electrodynamic model.

Keywords: directional coupler, broadband receiving system, circular polarization, cryo-cooled (cryo-coolable) to liquid hydrogen temperature.

Contacts: Victor S. Chernikov (cv.sergeevich@iaaras.ru).

For citation: Chernikov V. S, Khvostov Ye. Yu., Chernov V. K. Cooled ultra-wideband quadrature directional coupler // Transactions of IAA RAS. 2022. Vol. 60. P. 44–48.

https://doi.org/10.32876/ApplAstron.60.45-49

Введение

Одним из способов формирования радиоволн с круговыми поляризациями является возбуждение в квадратуре двух перпендикулярных друг другу излучателей с линейными поляризациями с равной мощностью. Данная конфигурация обеспечивает совпадение фазовых центров при приеме волн с правой и левой круговыми поляризациями, поэтому является основной при использовании в составе радиотелескопа. Важным элементом антенной системы, работающей по данному принципу, является квадратурный направленный ответвитель (HO) или квадратурный мост, позволяющий формировать на выходных портах устройства сигналы с фазовым сдвигом 90°. На сегодняшний день теория синтеза НО хорошо развита и описана в зарубежной (Маттей, 1971) и отечественной (Мещанов, 1980) литературе, однако синтез данных устройств требует особых технических решений, представленных в зарубежных работах Мозсово-<u>Mártir, 2009</u> и <u>Chen, 2006</u>. Для получения неизменного значения фазового сдвига между волнами напряжений на выходах устройства необходимо создать симметричную область связи с высоким коэффициентом ответвления. Однако это приводит к ряду технологических ограничений, усугубляющихся при криогенном охлаждении.

Согласно теоретическим оценкам <u>Garsia-Perez, 2018</u>, для формирования эллиптической поляризации с коэффициентом эллиптичности не более 3 дБ требуется реализовать следующие характеристики: амплитудный дисбаланс не более 2.5 дБ при разности фаз не более 12°. На сегодняшний день на рынке представлен большой ряд –3 дБ направленных ответвителей, удовлетворяющих этим требованиям, однако отсутствие данных о возможности их применения для диапазона температур 10–20 К делает невозможным их использование из соображений надежности.

Электродинамическое моделирование

При разработке топологии моста рассматривались конструкции, представленные в перечисленных выше работах, однако значительная деградация характеристик с ростом частоты или наличие элементов, которые наиболее вероятно будут подвержены разрушению при охлаждении, делает их применение нецелесообразным. Таким образом, в качестве основы была выбрана структура, описанная в работе <u>Javadzadeh</u>, <u>2010</u>, представляющая собой каскадное соединение секций полосковых линий с лицевой связью, для обеспечения высоких значений коэффициента связи в области центральных секций. Данная топология представляет собой две зеркально отраженные платы, разделенные тонким диэлектрическим слоем. Для наиболее сильной связи в области центральной секции необходимо использовать материал с малой диэлектрической проницаемостью, при этом учитывая его поведение при тепловых деформациях. Данное решение позволяет осуществить тандемное включение двух ответвителей с переходным ослаблением -8.34 дБ без использования перемычек и обеспечить равенство мощностей сигналов на выходах устройства. В Справочнике по элементам полосковой техники, 1979 представлены таблицы со значениями коэффициентов связи для секций ответвителя, с помощью которых были получены волновые сопротивления секций с использованием следующих выражений:

$$Z_{Be} = Z_{B} \sqrt{\frac{1+k}{1-k}}$$
$$Z_{BO} = Z_{B} \sqrt{\frac{1-k}{1+k}}$$

где *k* — коэффициент связи по амплитуде, *Z*_в — волновое сопротивление регулярной линии с данной геометрией, *Z*_{ве}, *Z*_{во} — волновые сопротивления четного и нечетного типов возбуждения. Далее по полученным значениям были рассчитаны параметры геометрии структуры (Справочник по элементам полосковой техники, 1979).

Входное сопротивление участка ответвления было выбрано равным 20 Ом для ослабления требований к точности совмещения слоев конструкции, в связи с чем для согласования был применен многоступенчатый трансформатор. Структурная схема устройства представлена на рис. 1.

Расчет электродинамической модели устройства производился методом FEM (<u>Деклу, 1976</u>). Результаты моделирования представлены на рис. 2, 3.

Рис. 1. Структурная схема моста

Рис. 2. Теоретические частотные зависимости S-параметров направленного ответвителя

Рис. 3. Расчетная зависимость разности фаз между сигналами на выходах устройства

Из представленных рисунков видно, что результаты моделирования удовлетворяют предъявляемым требованиям: разность фаз не превышает 8° при амплитудном дисбалансе не >2.5 дБ.

Конструкция

Для обеспечения целостности устройства при низких температурах и сильной связи между центральными секциями области связи выбран материал Rogers RO4350B с $\varepsilon = 3.66$, толщинами внешних слоев — 0.762 мм, среднего слоя — 0.254 мм и со значениями коэффициентов температурного расширения (КТР) по осям *x* и *y* равными соответственно ~14 K⁻¹ и ~16 K⁻¹, что обеспечивает слабые изменения характеристик и устойчивость медного покрытия при охлаждении (КТР меди $16.5 \cdot 10^{-6}$ K⁻¹).

Поскольку топология данного устройства обладает симметрией, то был разработан корпус, состоящий из симметричных пластин с торцевым

Рис. 4. Конструкция половины направленного ответви-

фланцем. Данное решение, представленное на рис. 4, обеспечивает простоту сборки устройства, отсутствие влияния деформаций корпуса на геометрию ответвителя, а совокупность винтов, отверстия для которых размещены по всей площади платы, позволяет осуществить плотное прилегание слоев конструкции.

В качестве портов для возбуждения ответвителя были применены коаксиальные разъемы с плоским контактом, плотно прижимающимся к плате для осуществления скользящего электрического контакта. Использование коаксиальных разъемов с цилиндрической жилой ограничено толщинами верхнего и среднего слоев структуры. Габаритные размеры конструкции составляют $125 \times 65 \times 8$ мм.

Результаты измерений

После изготовления были проведены измерения характеристик устройства при нормальных условиях (~300 K) с помощью векторного анализатора цепей.

Измерения при 10 К проводились с использованием криостатируемого блока, оснащенного датчиком температуры. Для размещения устройства

Рис. 5. Фрагмент стенда для измерений при температурах 10–20 K

Рис. 6. Измеренные частотные зависимости S-параметров

в криостатируемом блоке был изготовлен медный кронштейн, устанавливающийся на вторую ступень микроохладителя и выполняющий функцию отвода тепла (рис. 5).

Измерения внутри криостатируемого блока осложнены отсутствием возможности калибровки в охлажденном состоянии. Для учета систематической погрешности, вносимой характеристиками кабелей и гермовводов, находящихся при температуре ~10 K, был собран стенд и проведены измерения его параметров.

На рис. 6 представлены результаты измерений характеристик ответвителя при нормальных условиях и температуре ~10 К. Результаты измерений ответвителя были скорректированы с учетом характеристик измерительного тракта. Также видно, что в результате охлаждения уменьшились вносимые потери (на 3 дБ в верхней части диапазона) и неравномерность частотной характеристики.

На рис. 7 представлены результаты измерений частотных зависимостей обратных потерь и развязки. По этим данным можно сделать вывод, что уровень развязки между каналами в результате охлаждения практически не изменился. Ухудшение обратных потерь в области верхних частот может быть объяснено отсутствием возможности учета коэффициента отражения измерительного тракта и технологическими дефектами.

Основной характеристикой при формировании радиоволны с круговой поляризацией является разность фаз между сигналами на выходах ответвителя. На рис. 8 представлена частотная зависимость разности фаз при различных условиях измерений. При охлаждении устройства наблюдаются незначительные (~ 2–3°) изменения частотной зависимости разности фаз в диапазоне 3–12 ГГц. Для частот выше 12 ГГц наблюдаются сильные искажения характеристики, причина

Рис. 7. Частотные зависимости обратных потерь и уровня развязки

Рис. 8. Измеренный фазовый сдвиг между выходными портами при разных условиях измерения

которых не ясна и может быть связана с методикой измерения или технологическими дефектами при корпусировании.

Результаты этапов разработки макета сверхширокополосного квадратурного направленного ответвителя сведены в таблицу. Приведенные

Таблица

Частотный диапазон, ГГц	Этап	Дисбаланс амплитуды, дБ	Отклонение разности фаз, град.
3–12	Расчет	≤ 1	≤ 6°
	300 K	≤ 2.5	$\leq 12^{\circ}$
	10 K	≤ 2.5	≤ 13°
3–16	Расчет	≤ 2.5	≤ 8°
	300 K	≤ 3	$\leq 22^{\circ}$
	10 K	≤ 2.5	$\leq 20^{\circ}$

значения могут быть завышенными, поскольку они приводятся с учетом редких выбросов, не обладающих статистической надежностью.

Из представленных результатов видно, что характеристики изготовленного макета хуже расчетных, что говорит о необходимости доработки конструкции изделия. Однако в диапазоне 3–12 ГГц возможно применение данного устройства для формирования эллиптической поляризации с коэффициентом эллиптичности не более 3 дБ.

Заключение

В ходе данной работы был разработан сверхширокополосный квадратурный направленный ответвитель с рабочей полосой частот 3–16 ГГц. Полученные характеристики хорошо согласуются с результатами моделирования и являются приемлемыми при использовании ответвителя для формирования сигналов с круговой поляризацией. На текущем этапе целесообразно применение данного моста в диапазоне 3–12 ГГц.

В дальнейшем планируется оптимизация устройства для улучшения фазовых соотношений в Ки-диапазоне при работе в составе криостатируемого блока.

Литература

Деклу Ж. Метод конечных элементов: пер. с франц. Б. И. Квасова / под ред. Н. Н. Ященко. М.: Мир, 1976.

Маттей Г. Л., Янг Л., Джонс Е. М. Т. Фильтры СВЧ, согласующие цепи и цепи связи: пер. с англ. / под общ. ред. Л. В. Алексеева и Ф. В. Кушнира. М.: Связь, 1971. Т. 1. 439 с.

Мещанов В. П., Фельдитейн А. Л. Автоматизированное проектирование направленных ответвителей СВЧ. М.: Связь, 1980. 144 с.

Справочник по элементам полосковой техники / О. И. Мазепова, В. П. Мещанов, Н. И. Прохорова и др.; под ред. А. Л. Фельдштейна. М.: Связь, 1979. 336 с.

Chen H.-C., Chang C.-Y. Modified vertically installed planar couplers for ultrabroadband multisection quadrature hybrid // IEEE Microwave and Wireless Components Letters. 2006. Vol. 16, no. 8. P 446–448.

García-Pérez O., Tercero F., Malo I., López-Pérez J. A. Linear to circular polarization conversion using microwave hybrids for VGOS (2–14 GHz) / CDT Technical Report 2018-13. Spain: Observatorio de Yebes Guadalajara, 2018.

Mohammad Hassan Javadzadeh S., Mohammad Saeed Majedi S., Forouhar Farzaneh. An ultra-wideband 3-dB quadrature hybrid with multysection broadside stripline tandem structure. 6th International ICST Conference, MOBIMEDIA 2010, Conference paper. 2010. P. 672–681.

Moscoso-Mártir A., Wangüemert-Pérez J. G., Molina-Fernández I., Márquez-Segura E. Slot-coupled multisection quadrature hybryd for UWB applications // IEEE Microwave and Wireless Components Letters. 2009. Vol. 19, no. 3. P. 143–145.