О негравитационном ускорении в движении астероидов, сближающихся с Землей

© Ю. А. Чернетенко, В. Б. Кузнецов

ИПА РАН, г. Санкт-Петербург, Россия

Реферат

Для 294 астероидов, сближающихся с Землей (АСЗ), имеющих оптические и радарные наблюдения, получены значения параметров А₂ и А₃ негравитационного ускорения (НУ), вызываемого эффектом Ярковского (ЭЯ). Из них для дальнейшего анализа были отобраны 145 астероидов, для которых ошибки A₂ < 0.5 × 10⁻¹⁴ а.е. сут⁻², и такие решения мы считаем надежными.

Полученные значения параметров HV сопоставлены с размерами астероидов и значениями геометрического альбедо. Можно отметить некоторую корреляцию значений параметров A₂ и A₃ со значениями диаметров астероидов: при уменьшении диаметров |A₂ | и |A₃ | возрастают. Значения A₂ и |A₃ | сопоставлены с соответствующими значениями орбитальной широты полюсов вращения 33 астероидов. Ожидаемая зависимость от положения осей вращения астероидов, в общем, наблюдается: 1) значения A₂ отрицательны для обратного вращения и положительны для прямого вращения; 2) значения |A₃ | максимальны в случае, если ось вращения лежит вблизи плоскости орбиты, хотя этот вывод менее надежен, чем предыдущий.

При предположении о постоянном значении угла теплового запаздывания в 1° по значениям A₂ оценена величина A₁ и величина общего негравитационного ускорения \overline{A} : $|\overline{A}| < \sim (5-10) \times 10^{-11}$ а.е. сут⁻², что примерно на 4 порядка меньше, чем ускорение, вызываемое, в среднем, кометной сублимацией ($\sim 10^{-7}-10^{-8}$ а.е. сут⁻²). Эта оценка может быть полезной для разграничения проявлений кометной сублимации и эффекта Ярковского при рассмотрении движения астероидов с признаками кометной активности: если полученные оценки НУ больше этой величины, вероятнее всего, это НУ вызывается сублимацией.

Ключевые слова: астероид, орбита, негравитационное ускорение, параметры негравитационного ускорения, эффект Ярковского, альбедо, диаметр.

Контакты для связи: Чернетенко Юлия Андреевна (cya@iaaras.ru).

Для цитирования: Чернетенко Ю. А., Кузнецов В. Б. О негравитационном ускорении в движении астероидов, сближающихся с Землей // Труды ИПА РАН. 2021. Вып. 56. С. 48–54.

https://doi.org/10.32876/ApplAstron.56.48-54

On the Nongravitational Acceleration in the Motion of the Near-Earth Asteroids

Yu. A. Chernetenko, V. B. Kuznetsov

Institute of Applied Astronomy of the Russian Academy of Sciences, Saint Petersburg, Russia

Abstract

For 294 Near-Earth Asteroids (NEAs), having optical and radar observations, the values of the parameters A_2 and A_3 of the nongravitational acceleration (NGA), caused, as we believe, by the Yarkovsky effect, were obtained. 145 asteroids for which errors $A_2 < 0.5 \times 10^{-14}$ AU day⁻² were selected for further analysis, and such solutions can be considered reliable.

The obtained values of the NGA parameters are compared with the sizes of asteroids and the values of the geometric albedo. It is possible to note some correlation between the values of the parameters A_2 and A_3 with the values of the diameters of asteroids — $|A_2|$ and $|A_3|$ increase when diameters decrease. The values of A_2 and $|A_3|$ are compared with the corresponding values of the orbital latitude of the asteroid rotation poles. The expected dependence on the position of the axes of rotation of asteroids, in general, is observed: 1) A_2 is negative for reverse rotation and positive for forward rotation; 2) $|A_3|$ is maximal if the axis of rotation lies near the orbital plane.

Assuming a constant value of the angle of thermal lag of 1°, the values of A_1 were estimated from the values of A_2 and then the values of the total nongravitational acceleration \overline{A} ($|\overline{A}|^2 = A_1^2 + A_2^2 + A_3^2$) were calculated. It was proved, that $|\overline{A}| < \sim (5-10) \times 10^{-11}$ AU day⁻², which is about 4 orders of magnitude less than the acceleration caused, on average, by cometary sublimation (~ 10^{-7} – 10^{-8} AU day⁻²). This estimate can be useful for distinguishing between the manifestations of cometary sublimation and the Yarkovsky effect by revising the motion of asteroids with signs of cometary activity: if obtained estimations of NGA are greater than this value, most likely, this NGA is caused by sublimation. **Keywords:** asteroid, orbit, nongravitational acceleration, parameters of nongravitational acceleration, the Yarkovsky effect, geometric albedo, diameter.

Contacts: Yuliya Chernetenko (cya@iaaras.ru).

For citation: Chernetenko Yu. A., Kuznetsov V. B. On the nongravitational acceleration in the motion of near-Earth asteroids // Transactions of IAA RAS. 2021. Vol. 56. P. 48–54.

https://doi.org/10.32876/ApplAstron.56.48-54

Введение

НУ в движении астероидов вызывается ЭЯ [1], хотя для астероидов с признаками кометной активности возможно и НУ, вызываемое сублимацией кометных льдов. При учете действия НУ удобно представлять его тремя составляющими общего НУ А: (А1, А2, А3), радиальной, трансверсальной и нормальной, так что $A^2 = A_1^2 + A_2^2 + A_3^2$, где $A \equiv |\overline{A}|$. Для ЭЯ предполагается, что зависимость его от гелиоцентрического расстояния имеет вид $1/r^2$. Общее негравитационное ускорение зависит от физического состава тела, его размера и формы, характера вращения, и, возможно, других характеристик. Влияние составляющей А₂ на скорость тела имеет вековой характер и поэтому определяется увереннее по сравнению с А₁ и А₃, влияние которых на орбитальные параметры является периодическим в течение одного оборота. По этой причине для большинства астероидов статистически уверенно можно определить только А2, хотя эта величина не дает представление о величине общего НУ.

Значительное число позиционных наблюдений, наличие радарных наблюдений позволяет для ряда ACЗ поставить задачу об определении и двух других составляющих HV. В настоящей работе авторы выполнили, кроме A₂, также определения параметра A₃, и при предположении о величине угла теплового запаздывания получили оценку величины общего ускорения A. Выполнено также сравнение общего ускорения со значениями 1) диаметров, 2) геометрического альбедо астероидов, 3) положений осей вращения астероидов.

Полученные результаты и их анализ

Принятая в работе модель движения включает возмущения от больших планет по эфемериде DE405, от Плутона, Цереры, Паллады и Весты; релятивистские члены от Солнца; динамическое сжатие Земли и Солнца. Раздельно учитывались возмущения от Земли и Луны. Учитывалось действие НУ по указанной выше схеме.

Рассмотрены 294 АСЗ, для которых, кроме позиционных, есть и радарные наблюдения. Использовались позиционные наблюдения из каталога Международного центра малых планет [2], радарные наблюдения взяты из базы данных JPL Solar-SystemDynamics [3]. В качестве примера в табл. 1 для нескольких астероидов приводятся результаты определений параметров НУ совместно с орбитальными параметрами. Параметры НУ представлены в единицах 10^{-14} а.е. сут⁻². В первом столбце кроме номера астероида приводятся также значения диаметров — D, и геометрическое альбедо — p, в соответствии с данными на указанном сайте JPL. В 3–5 столбцах — значения параметров НУ и соответствующие значения среднеквадратических ошибок (СКО). В последнем столбце — значение СКО для варианта уточнения только орбитальных параметров.

Видно, что значения A₁ и A₃ имеют примерно один порядок, а значения A₁ примерно на 2–3 порядка больше значения A₂. Жирным шрифтом выделено наименьшее из четырех значение СКО для каждого астероида.

В результате включения в модель движения НУ только для ~ 2/3 из 294 рассмотренных астероидов произошло уменьшение значений СКО. Таким образом, соотношение значений СКО не всегда является надежным критерием для выбора лучшего решения, возможно, по следующей причине: влияние НУ на представление наблюдений невелико, и включение в процедуру улучшения или исключение из нее даже одного наблюдения может изменить значение СКО.

Для ~ 2/3 рассмотренных астероидов значения параметра А1 отрицательны, что противоречит физическим представлениям о проявлении НУ в движении астероидов (отрицательное значение А1 означает, что угол теплового запаздывания превышает 90°). Вероятнее всего, полученные отрицательные значения А1 являются следствием неучтенных ошибок наблюдений и/или значительным отличием формы астероидов от близкой к сферической. Поэтому, в качестве основного, рассматриваемого далее, принят вариант с определением А₂ и А₃. В качестве критерия при отборе надежных результатов определения параметров НУ мы рассматривали ошибку определения А2 (как наиболее надежного результата) и оставили для дальнейшего анализа решения с ошибкой $A_2 < 0.5 \cdot 10^{-14}$ а.е. сут⁻². Это значение было выбрано, конечно, эмпирически, исходя из полученных которые значений A_2 , имеют диапазон ~(10-13 - 10-15) а.е. сут -2. Таких астероидов оказалось 145.

Варианты решений Астероид Параметр A1, A2, A3 A_2, A_3 A_2 _ 1602.9 ± 33.7 _ _ A_1 _ 433 Эрос A_2 -0.99 ± 0.11 -0.97 ± 0.11 -0.94 ± 0.11 396.0 ± 37.7 D = 16.84 км A_3 397.1 ± 37.7 _ _ p = 0.25 1651.4 ± 50.6 А СКО, " 0.268570.267480.26701 0.26777 -997.6 ± 18.4 _ A_1 _ _ 4179 Тоутатис 3.15 ± 0.58 1.63 ± 0.43 _ A_2 3.71 ± 0.58 874.4 ± 11.2 915.6 ± 7.6 D = 5.4 км A_3 p = 0.405А 1326.6 ± 21.5 _ СКО, " 0.29986 0.297060.30788 0.27564 -420.7 ± 15.3 _ A_1 _ _ 99942 Апофис -2.59 ± 0.22 -2.64 ± 0.14 -2.99 ± 0.08 _ A_2 500.8 ± 26.3 528.7 ± 26.5 D = 0.34 км A_3 p = 0.23А 654.1 ± 30.4 _ СКО, " 0.21353 0.21443 0.21733 0.21738 -641.8 ± 5.8 _ _ A_1 _ 159402 (1999 AP10) -3.57 ± 0.14 -13.45 ± 0.19 -3.80 ± 0.15 A_2 592.2 ± 22.8 D - 563.1 ± 20.8 A_3 p – А 873.3 ± 23.5 _ _ _ 0.15555СКО, " 0.138670.13781 0.14504

Результаты решений относительно орбитальных параметров и параметров НУ (в единицах 10⁻¹⁴ а.е. сут ⁻²)

Оценим реальность полученных значений параметров НУ, основываясь на физических соображениях о природе НУ. Угол теплового запаздывания — Ө, характеризующий максимум излучения тепловых фотонов относительно момента достижения подсолнечной точки, составляет ~(0-10)°. По этой причине параметр А1 должен быть больше нуля. О возможных причинах невыполнения этого было сказано ранее. Знаки параметров А2 и Аз определяются главным образом направлением вращения астероида (положением оси вращения в пространстве) и могут принимать как положительное, так и отрицательное значения. На рис. 1 приводятся значения параметров А2 и А₃ для 145 астероидов. Видно, что значения Аз в основном находятся интервале в $(-1500 - +1500) \times 10^{-14}$ а.е. сут⁻². Такой же порядок значений может иметь составляющая А1.

Оценим величину общего НУ. Из физических соображений следует, что угол теплового запаздывания — Θ — составляет ~ $(0-10)^{\circ}$, а tg Θ = = $|A_2|/|A_1|$. Если предположить, что Θ = 1°, то можно получить значения $|A_1|$, имея значения $|A_2|$. С учетом этого предположения получено для рассматриваемого ряда астероидов, что величина общего негравитационного ускорения A не превышает нескольких единиц 10^{-11} а.е. сут⁻².

Интересно сопоставить значения параметров A_2 , A_3 и A со значениями D и p астероидов. Из физических соображений следует, что величина HУ пропорциональна 1/R, где R — радиус тела. A свойства поверхности, характеризуемые в частности альбедо, определяют количество тепловых фотонов и угол теплового запаздывания. На рис. 2 и 3 сопоставлены значения параметров A_2 , A_3 и A со значениями диаметров и геометрического альбедо астероидов, полученных на сайте JPL. Диаметры и альбедо известны не для всех астероидов,

Таблица 1

Рис. 1. Значения А2 и А3 для 145 астероидов

Рис. 2. Сопоставление 117 значений $|A_2|$ и $|A_3|$ со значениями диаметров астероидов *D*. На *b* показаны значения для 115 астероидов

поэтому количество значений A₂, A₃, включенных в представления на графиках, различаются и меньше 145. Рис. 2*b* является частью рис. 2*a* и показывает, что можно выделить две группы астероидов в их зависимости от значений диаметров. Меньшая группа включает астероиды с номерами 1864, 3122, 4179, 7889, 11066, 65803, 66391, 162000, 276049, 363599. Авторы не смогли найти ни орбитальные, ни физические параметры, которые были бы характерны именно для этой группы астероидов.

Малое количество астероидов с диаметрами более 3–4 км не позволяет сделать вывод о зависимости значений $|A_2|$ и $|A_3|$ от диаметров, хотя тенденция такая существует.

На рис. 3–5 приводятся аппроксимации данных по формулам y = a + bx и $y = ax^2 + bx + c$. Соответствующие значения коэффициентов a, b, c и их ошибки приводятся в правом верхнем углу рисунков.

На рис. 3 значения $|A_2|$ и $|A_3|$ для 104 астероидов сопоставлены со значениями геометрического альбедо для 104 астероидов. Значимая зависимость не обнаруживается, возможно, из-за недостаточного числа астероидов с известными значениями альбедо.

На рис. 4 значения диаметров и альбедо сопоставлены с нашими оценками общего НУ и подтверждают выводы, полученные для составляющих A₂ и A₃: 1) существует некоторая зависимость НУ от размера астероида; 2) зависимость от альбедо не обнаруживается.

Рис. 3. Сопоставление значений $|\,A_2|$ и $|\,A_3|$ со значениями геометрического альбедо p для 104 астероидов

Рис. 4. Сопоставление значений A со значениями диаметров D (для 117 астероидов) и альбедо p (для 104 астероидов)

Рис. 5. Сопоставление значений $A_2(a)$ и $|A_3|(b)$ со значениями широты полюса оси вращения b_s

Сопоставление А₂ и А₃ с положениями полюсов осей вращения астероидов

Как уже отмечалось, знак составляющей A₂ определяется (в идеальном случае почти сферического астероида) направлением вращения астероида. Если орбитальная широта полюса оси вращения близка к нулю, то A₂ также будет близко к нулю. В случае обратного вращения A₂ отрицательно, в случае прямого вращения — положительно. Поэтому интересно сопоставить полученные нами значения A₂ и координаты полюса вращения. Что касается параметра A₃, то, если ось вращения тела перпендикулярна плоскости орбиты, этот параметр должен быть близок к нулю. Если ось вращения лежит вблизи плоскости орбиты, то |A₃| должен быть максимален.

В табл. 2 приводятся значения координат северного полюса осей вращения 33 астероидов [4] в эклиптикальной системе координат (L и B) и полученные нами значения этих координат в орбитальной системе координат (l и b_s). Если для астероида приводится несколько значений координат

полюса, авторы использовали последнее по времени публикации значение.

На рис. 5 сопоставлены значения A_2 (рис. 5*a*) и |A₃| (рис. 5*b*) с соответствующими значениями орбитальной широты полюса вращения астероида bs. Можно сказать, что ожидаемая зависимость от направления осей вращения астероидов в общем наблюдается: 1) значения А2 отрицательны для обратного вращения и положительны для прямого вращения; 2) значения |А₃| максимальны в случае, если ось вращения лежит вблизи плоскости орбиты, при аппроксимации данных параболой или полиномом третьей степени; при аппроксимации синусоидой максимум окажется на широте ~ -30°, а минимум на широте ~ +45°. Интересно отметить, что для выборки в 33 астероида отрицательных значений А₂ больше, чем положительных (как и на рис. 1), что говорит о преобладании астероидов с обратным вращением. Отметим также, что рассмотренных здесь данных явно недостаточно для надежных выводов о зависимости значений |А₃| от широты полюсов вращения, кроме того, сами значения координат полюсов вращения известны недостаточно точно.

Ν	<i>L</i> , град	<i>В,</i> град	Ω, град	<i>і,</i> град	<i>l,</i> град	bs, град
433	17.2	11.4	304.29883	10.83050	73.2	1.0
887	190.0	33.0	10.43273	9.39376	173.5	32.4
1036	198.0	-79.0	215.53252	26.67567	290.3	-58.4
1566	270.0	-81.0	87.98005	22.81168	248.0	-65.3
1580	136.0	22.0	62.29476	52.07910	72.8	-28.2
1620	58.0	-49.0	337.18541	13.33761	77.1	-62.1
1627	336.0	37.0	33.11931	8.45213	307.0	44.0
1685	71.0	-69.0	274.23738	9.38267	182.2	-70.8
1862	48.0	-72.0	35.61180	6.35528	352.6	-72.3
1863	108.0	56.0	46.42666	18.39885	69.9	39.2
1864	67.0	-80.0	6.61795	22.21392	290.2	-75.6
1865	311.0	-78.0	212.90723	16.09676	248.3	-85.5
1980	324.0	-69.0	246.56179	26.86755	305.3	-82.3
2063	24.0	-26.0	33.07527	9.43084	346.6	-24.2
2100	292.0	-65.0	170.79821	15.75385	155.0	-76.0
3102	359.0	-90.0	172.05281	8.44399	270.0	-81.6
3103	226.0	-70.0	129.75260	20.93123	206.0	-87.6
3200	308.0	-52.0	265.21995	22.25710	11.1	-62.6
3752	256.0	-14.0	147.96269	55.56497	133.0	-63.9
3908	292.0	71.0	61.24034	2.18520	226.3	72.7
4015	132.0	-34.0	266.79020	2.79872	226.5	-32.0
4660	25.0	80.0	14.40620	1.43163	18.3	79.7
4769	253.0	-56.0	325.53903	8.88570	284.4	-47.4
10115	39.0	-3.0	8.90384	15.32042	28.5	-10.5
17511	120.0	-18.0	355.91954	9.58349	126.3	-25.8
29075	88.6	77.7	56.65336	12.16798	60.3	68.7
33342	1.0	10.0	81.68019	7.36698	279.6	17.3
40267	33.0	58.0	148.23031	34.49650	159.3	76.0
66391	341.0	-56.0	244.90162	38.87984	235.8	-3.9
99942	250.0	-75.0	203.96551	3.33888	35.8	-77.2
162173	73.0	-62.0	251.31464	5.86634	192.5	-61.3
175706	242.0	-84.0	299.67741	1.99115	294.5	-82.2
185851	291.0	80.0	58.67561	8.67197	173.0	83.9

Коорлинаты полюсов осей вращения астероилов в эклиптикальной (L, B) и орбитальной (l, b_s) системах коорлинат

Заключение

1. Для 294 АСЗ, имеющих оптические и радарные наблюдения, получены значения параметров A_2 и A_3 негравитационного ускорения, вызываемого эффектом Ярковского. Для дальнейшего анализа были отобраны 145 астероидов с ошибками параметра $A_2 < 0.5 \times 10^{-14}$ а.е. сут⁻².

2. Полученные значения параметров НУ сопоставлены с размерами астероидов и значениями геометрического альбедо. Можно отметить некоторую корреляцию значений параметра A₂ и общего ускорения A со значениями диаметров астероидов — при уменьшении диаметров эти параметры возрастают.

3. Значения A₂ и |A₃|сопоставлены с соответствующими значениями орбитальной широты полюса вращения 33 астероидов. Можно заключить, что ожидаемая зависимость от направления осей вращения астероидов в общем наблюдается: 1) значения A₂ отрицательны для обратного вращения и положительны для прямого вращения; 2) значения |A₃| максимальны в случае, если ось вращения лежит вблизи плоскости орбиты, хотя этот вывод менее надежен, чем предыдущий.

4. Оценена величина общего негравитационного ускорения \overline{A} в результате действия эффекта Ярковского, $|\overline{A}| < \sim (5-10) \times 10^{-11}$ а.е. сут⁻², что примерно на 4 порядка меньше, чем ускорение, вызываемое в среднем кометной сублимацией (~10⁻⁷-10⁻⁸ а.е. сут⁻²). Эта оценка может использоваться для разграничения проявлений кометной сублимации и эффекта Ярковского при рассмотрении движения астероидов с признаками кометной активности: если полученные оценки НУ больше этой величины, вероятнее всего, это НУ вызывает-ся сублимацией.

Таблица 2

Литература

1. Bottke Jr., William F. et al. TheYarkovsky and YORP Effects: Implications for Asteroid Dynamics. Annu. Rev. Earth Planet. Sci. 34. 2006. P.157–191.

2. IAU Minor Planet Center [Электронный ресурс]. URL: https:// minorplanetcenter.net//db_search (дата обращения 11.01.2021). 3. NASA Jet Propulsion Laboratory [Электронный pecypc]. URL: https://ssd.jpl.nasa.gov/tools/sbdb_lookup. html#/?sstr=1 (дата обращения 11.01.2021).

4. Ephemerides of minor planets for 2021. Отв. редактор Ю. А. Чернетенко. Санкт-Петербург, 2020. С. 8338–8446.