В.И. Кузнецов, *доктор технических наук, старший научный сотрудник*; Т.В. Данилова, *кандидат технических наук*; М.А. Архипова; М.А. Маслова

АСТРОНОМИЧЕСКАЯ СИСТЕМА АВТОНОМНОЙ НАВИГАЦИИ И ОРИЕНТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ ШИРОКОГО НАЗНАЧЕНИЯ

34 отдел ВИ (НИ)

Астрономическая система автономной навигации и ориентации (ACAHO) основана на бортовых измерениях в ОЭП координат звезд и звездных величин.

Обеспечивает выполнение следующих функций:

- высокоточное решение задачи навигации и ориентации методом виртуальных измерений зенитных расстояний звезд (ВИЗРЗ);
- формирование оценок параметров орбиты и ориентации аппарата при отсутствии априорной информации.

КА стабилизирован по осям ТОСК с погрешностью не более 15°.

Метод виртуальных измерений зенитных расстояний звезд

Минимальный состав измерителей:

- два ОЭП в кардановых подвесах,
- один ОЭП жестко закреплен на корпусе КА.

Задача навигации

Навигационный параметр ϕ – зенитное расстояние звезды. Фактически не измеряется, а рассчитывается из значений измеренных координат звезд.

1. Расчет угла ф

$$\mathbf{b} = \mathbf{M}_2 \cdot \mathbf{M}_1 \cdot \mathbf{a} \qquad \qquad \mathbf{b} \left(b_S, b_T, b_W \right) \tag{1}$$
$$\boldsymbol{\phi} = \arccos(b_S)$$

- M₁ матрица перехода из ПСК в ССК. Рассчитывается через углы λ и ρ, поставляемые датчиками карданова подвеса;
- M₂ матрица перехода из ССК в ТОСК. Формируется через θ, ψ, γ углы тангажа, рыскания и крена;
- **а** (0; 0; 1) орт визируемой звезды в ПСК, **b** направляющие косинусы звезды в ТОСК.

2. Решение навигационной задачи

$$\Delta \mathbf{q}_{0l} = \left(\sum_{j=1}^{n} \mathbf{G}_{0j}^{T} \mathbf{P}_{j} \mathbf{G}_{0j}\right)^{-1} \left(\sum_{j=1}^{n} \mathbf{G}_{0j}^{T} \mathbf{P}_{j} \Delta \mathbf{L}_{j}\right)$$

l – номер итерации;

j – номер навигационного сеанса;

n – число навигационных сеансов на мерном интервале;

 Δq_{0l} – поправка к начальным параметрам орбиты на итерации с номером *l*;

$$\mathbf{P}_i$$
 – весовая матрица измерений, $\mathbf{P}_i = \mathbf{K}_{oi}^{-1}$;

 $\mathbf{K}_{\omega j}^{-1}$ – матрица вторых моментов погрешностей измерений;

 $\Delta \mathbf{L}_{j}$ – вектор невязок измерений, $\Delta \mathbf{L}_{j} = \mathbf{L}_{j u з M} - \mathbf{L}_{j pac 4}$;

 $L_{j\,u_{3M}}$ и $L_{j\,pac_4}$ – измеренные и расчетные значения навигационной вектор-функции (в данной задаче – углы ϕ);

- \mathbf{G}_{0i} градиентная матрица, $\mathbf{G}_{0i} = \mathbf{G}_i \cdot \mathbf{\Phi}_{0i}$;
- \mathbf{G}_{i} местная градиентная матрица, $\mathbf{G}_{i} = \partial \mathbf{L}_{i} / \partial \mathbf{q}_{i}$;
- $\mathbf{\Phi}_{0j}$ матрица изохронных производных, $\mathbf{\Phi}_{0j} = \partial \mathbf{q}_j / \partial \mathbf{q}_0$;

 \mathbf{q}_0 и \mathbf{q}_j – соответственно начальные и текущие параметры орбиты.

С целью повышения точности метод дополнен алгоритмом оптимизации программы измерений путем минимизации линейной комбинации дисперсий уточняемых параметров орбиты.

(2)

ΑСАНО КА

Задача ориентации

Законы динамики ориентации:

• однопараметрический	$a = a_0,$
линейный	$a = a_0 + a_1 t,$
• квадратичный	$a = a_0 + a_1 t + a_2 t^2,$
синусоидальный	$a = a_0 + a_1 \cdot \sin(a_2t + a_3).$

B общем виде $u_k = f(a_{km})$,

k = 1, 2, 3 – номер угла ориентации: тангаж (9), рысканье (ψ), крен (γ); m = 0, ..., 3 – номер параметра.

Оценки параметров ориентации формируются как сглаженные за мерный интервал, основываясь на МНК, по алгоритму (2).

Вектор уточняемых параметров ориентации $\mathbf{q} = \{a_{k0}, a_{k1}, a_{k2}, a_{k3}\}, k = 1, 2, 3.$ Измеряемая вектор-функция L содержит приборные координаты звезд (ξ_{ji}, η_{ji}), j = 1, ..., n – номер измерительного сеанса; i = 1, ..., 5 – номер ОЭП.

При отсутствии динамики (однопараметрический закон) : $\Phi_{0j} = \mathbf{E}$

При наличии динамики: $\Phi_{0j} = \{ \partial u_{kj} / \partial t \}$

Местная градиентная матрица:
$$\mathbf{G}_{j}^{T} = \left(\partial \xi_{ji} / \partial q_{jk}, \partial \eta_{ji} / \partial q_{jk}\right)$$

 ξ_{ji} , η_{ji} – измеренные приборные координаты звезд; j = 1, ..., n – номер измерительного сеанса; i = 1, ..., 5 – номер ОЭП; k = 1, 2, 3 – номер угла ориентации: тангаж (9), рысканье (ψ), крен (γ).

Элементы матрицы **G**_j:
$$\partial \xi / \partial a_{km} = \partial \xi / \partial u_k \cdot \partial u_k / \partial a_{km}$$

 $\partial \eta / \partial a_{km} = \partial \eta / \partial u_k \cdot \partial u_k / \partial a_{km}$

$$\mathbf{a} = \mathbf{M}_1^{-1} \cdot \mathbf{M}_2^{-1} \cdot \mathbf{b}$$

Для тангажа (k = 1)

$$\frac{\partial \xi}{\partial \vartheta} = C \cdot \{ [-\sin\lambda \cdot A + \cos\lambda \cdot (B \cdot b_S - D \cdot b_T)] \cdot (-\xi^2 - f^2) + \\ + [-\cos\lambda \cdot \sin\rho \cdot A - \sin\lambda \cdot \sin\rho \cdot (B \cdot b_S - D \cdot b_T) + \cos\rho \cdot (E \cdot b_S + G \cdot b_T)] \cdot \eta \cdot \xi \},$$

$$\frac{\partial \eta}{\partial \vartheta} = C \cdot \{ [-\cos\lambda \cdot \sin\rho \cdot A - \sin\lambda \cdot \sin\rho \cdot (B \cdot b_S - D \cdot b_T) + \cos\rho \cdot (E \cdot b_S + (\cos\theta \cdot \cos\gamma - \sin\theta \cdot \sin\psi \cdot \sin\gamma) \cdot b_T)] \cdot (-\eta^2 - f^2) + [-\sin\lambda \cdot A + \cos\lambda \cdot (B \cdot b_S - D \cdot b_T)] \cdot \eta \cdot \xi \},$$

$$A = (-\cos \vartheta \cdot \cos \psi \cdot b_S - \sin \vartheta \cdot \cos \psi \cdot b_T) \qquad B = (-\sin \vartheta \cdot \sin \gamma + \cos \vartheta \cdot \sin \psi \cdot \cos \gamma)$$
$$C = \sqrt{\left(\xi^2 + \eta^2 + f^2\right)} / f^2 \qquad D = (\cos \vartheta \cdot \sin \gamma + \sin \vartheta \cdot \sin \psi \cdot \cos \gamma)$$
$$E = (-\sin \vartheta \cdot \cos \gamma - \cos \vartheta \cdot \sin \psi \cdot \sin \gamma) \qquad G = (\cos \vartheta \cdot \cos \gamma - \sin \vartheta \cdot \sin \psi \cdot \sin \gamma)$$

Таким образом, если использовать измеренные координаты звезд на всем мерном интервале совокупно и рассчитать чувствительность их по отношению к углам ориентации, то можно получить сглаженные по МНК итеративные оценки параметров закона динамика углов ориентации корпуса КА относительно ТОСК.

ΑСАНО КА

Модифицированный метод определения оценок параметров орбиты и ориентации КА при отсутствии априорной информации

Модификация метода включает:

- использование ОЭП, помещенных в карданов подвес (алгоритм наведения);
- развитие алгоритма распознавания.

Результаты моделирования

Испытания АСАНО проведены в среде АСНИ – автоматизированной системы научных исследований методов и алгоритмов автономной навигации и ориентации.

9

10

Таблица 1

Исходные данные

N⁰			Параметры ориентации						
эксп.	а (км)	е	i (°)	$\Omega\left(^{\circ} ight)$	ω (°)	θ (°)	θ (°)	ψ (°)	γ (°)
1	6578	0.01	85	45	30	40	0.012	1.5	-4
2	6780	0.01	85	120	10	80	0.001	2	-1
3	7070	0.002	98.18	135	0	20	0.002	0.5	0.7
4	7095	0.005	98.18	125	10	20	0.003	7	4
5	7378	0.01	85	5	70	20	0.0042	0.5	6
6	8258.4	0.001	104.1	29.78	0	0	0.0025	6	7
7	8258.4	0.001	104.1	209.78	51	0	0.0014	-4	-2
8	8800	0.2	56	320	40	30	0.0075	3.3	-0.85
9	25700	0.01	64.8	0	60	40	-0.001	-0.3	2
10	26557	0.712	63.4	280	270	20	0.012	7	-5
11	27800	0.75	0.01	0	60	60	-0.005	1.5	3
12	29000	0.75	63	45	70	25	0.008	0.01	0.25
13	42164.2	0.25	63.8	350	270	40	0.001	2	-3
14	42400	0.0056	0.011	0	30	275	0.003	-1	1.5
15	155391	0.9	51.7	9	317.4	17.95	0.001	0.05	0.3

4

Таблица 2

Результаты экспериментов

	Метод формирования опорных параметров орбиты (фаза 1)						Метод ВИЗРЗ (фаза 2)						
№ эксп.	расхождение орбит				погрешность ориентации		расхождение орбит				погрешность ориентации		
	начальная точка		конечная точка		Δψ	Δγ	определяемая точка		максимум на витке		<u>Δ</u> 9	Δψ	Δγ
	∆ R (км)	ΔV (м/с)	∆ R (км)	ΔV (м/c)	(")	(")	∆ R (м)	ΔV (см/с)	∆ R (м)	ΔV (см/с)	(")	(")	(")
1	3.81	6.20	4.54	6.51	2.45	20.09	0.26	0.049	0.45	0.049	0.030	0.036	0.026
2	4.798	4.30	4.27	5.49	10.80	14.40	0.49	0.065	0.60	0.070	0.033	0.050	0.038
3	5.78	3.63	2.15	4.32	31.24	16.05	0.45	0.047	0.78	0.084	0.019	0.015	0.006
4	6.36	4.81	2.54	4.86	27.18	18.11	0.40	0.026	0.46	0.041	0.002	0.006	0.005
5	3.30	5.35	2.89	3.81	3.79	17.61	0.51	0.048	0.82	0.068	0.024	0.039	0.034
6	4.18	1.75	7.13	3.59	39.71	15.24	0.93	0.061	1.45	0.103	0.007	0.015	0.017
7	2.98	3.57	2.99	9.30	7.59	37.60	0.76	0.054	0.78	0.072	0.028	0.019	0.020
8	5.46	8.13	7.84	15.73	5.82	48.51	2.78	0.233	2.78	0.233	0.007	0.020	0.002
9	8.70	2.02	10.48	2.03	2.18	7.20	1.10	0.016	1.13	0.016	0.008	0.005	0.007
10	5.40	14.56	24.77	13.40	29.66	35.27	3.17	0.142	5.21	0.267	0.592	0.174	0.089
11	44.26	24.86	36.34	13.70	1.67	2.64	2.48	0.081	2.48	0.081	0.017	0.016	0.019
12	8.60	17.89	7.67	9.86	54.58	8.31	2.66	0.001	2.66	0.101	0.024	0.043	0.036
13	4.69	0.48	6.04	0.74	1.97	0.78	4.51	0.054	7.14	0.054	0.135	0.218	0.183
14	3.51	0.19	3.75	0.20	0.08	0.07	1.45	0.014	4.28	0.026	0.181	0.382	0.234
15	147.3	82.78	379.5	38.59	258.1	755.9	12.8	0.216	16.2	0.317	32.37	25.9	75.3

Таблица 3

Результаты статистических решений метода ВИЗРЗ

Nº		ΔS (м)			Δ R (м)		ΔV (см/с)			
эксп.	Δ	σ	χ	Δ	σ	χ	Δ	σ	χ	
1	0.137	0.116	0.485	0.39	0.202	0.996	0.042	0.0219	0.1077	
3	0.138	0.127	0.519	0.47	0.261	1.253	0.045	0.0254	0.1212	
5	0.154	0.138	0.568	0.46	0.251	1.213	0.043	0.0238	0.1144	
6	0.160	0.128	0.544	0.42	0.221	1.083	0.031	0.0159	0.0787	
8	0.177	0.134	0.579	0.57	0.270	1.38	0.038	0.0197	0.0971	
9	0.540	0.455	1.905	1.50	0.883	4.149	0.02	0.012	0.0560	
10	0.491	0.547	2.132	1.60	0.857	4.171	0.019	0.0198	0.0784	
11	0.571	0.740	2.791	1.60	1.000	4.6	0.018	0.0207	0.0801	
12	0.635	0.774	2.957	1.70	0.979	4.637	0.018	0.0232	0.0876	
13	0.820	0.635	2.725	2.40	1.230	6.09	0.015	0.0095	0.0435	
14	0.827	0.708	2.951	2.40	1.310	6.33	0.016	0.0085	0.0415	
15	2.632	1.538	7.246	11.31	5.487	27.771	0.093	0.0283	0.1779	

ΑСАНΟ КА

На предложенные методы получены патенты

13

Развитие системы

- повышение точностных характеристик,
- сокращение состава измерителей,
- расширение функциональных возможностей.

Заключение

- 1. Предлагаемая ACAHO обладает способностью самовосстановления в случае возникновения нештатной ситуации, связанной с утратой данных об орбите.
- 2. Область использования звездных датчиков может быть расширена. На основе астроизмерений может быть не только определена ориентация КА, как происходит в настоящее время, но и сформированы довольно точные навигационные определения.
- 3. Результаты моделирования подтвердили работоспособность предлагаемой АСАНО, ее высокие точностные характеристики, реальность достижения цели разработок.
- 4. Предлагаемая ACAHO может быть предложена в качестве основного или резервного контура навигационно-баллистического обеспечения КА различного назначения.

Спасибо за внимание!

34 отдел ВИ (НИ)