Участие центра анализа РСДБ наблюдений ИПА РАН в Рабочей группе WG ICRF 3

Курдубов С. Л., Скурихина Е. А., Миронова С. М.

Институт прикладной астрономии Российской академии наук, Санкт-Петербург, Россия

17 апреля 2017 г.

Решение XXIII ГА МАС: с 1 января 1998 г.

- Начало в барицентре Солнечной системы
- Кинематически невращающаяся по отношению в ансамблю удаленных внегалактических объектов
- Ориентация не зависит от эпохи, эклиптики или экватора
- Ориентация осей задается списком координат внегалактических радиоисточников
- Для связи с предыдущей реализацией фундаментальной системы координат средний экватор и динамическое равноденствие на эпоху J2000.0 FK5

Терминология ICRS и ICRF

- ICRS International Celestial Reference System
 - Общие принципы построения
- ICRF International Celestial Reference Frame
 - Реализация в виде каталога координат
- Перевод на русский язык
 - ICRS Международная Небесная Система Отсчета
 - ICRF Международная Небесная Система Координат

План работ группы ICRF3

- Определение подходящего метода выбора стабильных источников
- Обновление индексов стабильности источников
- Создание комбинированной ICRF из индивидуальных прототипов ICRF3 решений
- Определение списка переходных радиоисточников ICRF2 в ICRF3
- Выбор определяющих источников ICRF3
- Разработка рекомендации по галактической аберрации
- Прототипы решений ICRF3 должны соответствовать моделям, описанным в IERS conventions
- Прототипы ICRF3 решений Geosciences Australia, GFZ, GSFC, IAA, Paris Observatory, USNO и TU Vienna

Участие ИПА РАН в работе ICRF3 WG

- Глобальная обработка РСДБ наблюдений для получения каталогов координат радиоисточников
- Алгоритм выбора определяющих и источников
- Анализ систематических разностей каталогов, представляемых различными центрами
- Определение параметров галактической аберрации
- Вычисление временных рядов координат радиоисточников
- Развитие и поддержание пакета обработки РСДБ наблюдений QUASAR

Параметризация глобального уравнивания РСДБ наблюдений в ИПА РАН

Глобальные параметры:

- Склонение и прямое восхождение радиоисточников
- Координаты и скорости РСДБ станций
- Суточные параметры
 - Параметры вращения Земли (Хр, Ур, UT1-UTC, Хс, Ус)
 - Линейный ход тропосферной задержки
 - Квадратичных тренд рассинхронизации часов
- Стохастические внутрисуточные параметры
 - Стохастическая компонента тропосферной задержки
 - Стохастическая компонента рассинхронизации часов

Предварительный каталог ИПА

- Каталог радиоисточников iaa-sx-161013-а был получен с помощью глобального уравнивания серий
 РСДБ-наблюдений программным комплексом Quasar
- Экваториальные координаты 3610 радиоисточников
- РСДБ наблюдения с 1979 по 2016 год
- Общее количество измеренных задержек 8 722 675
- iaa-sx-161013-а комбинируется с данными из других организаций для получения предварительной версии каталога ICRF3

Формальные ошибки по δ

Formal uncertainty of the DE, arcsec

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Формальные ошибки по α

Formal uncertainty of the RA, sec

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Конфигурация базового решения

- Картирующие функции влажной и сухой задержек: модель VMF1
- Картирующая функция градиента: модель Davis et al.
- Модель Саастамойнена для сухой тропосферной задержки
- ▶ Учет суточных вариаций ПВЗ по IERS Conventions (2010)
- Учет океанических нагрузок включен, атмосферных выключен
- Постньютоновские параметры не оцениваются

Картирующие функции сухой и влажной задержек по модели Нила

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Учет океанической нагрузки

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Учет сухой тропосферной задержки по модели Девиса

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Внутрисуточные вариации ПВЗ

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Учет тропосферных градиентов по модели Чена и Херринга

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Учет внутрисуточных вариаций ПВЗ

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

ICRF2-aus

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

ICRF2-gsf-sx

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

ICRF2-iaa

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

ICRF2-opa

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

ICRF2-usn

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

ICRF2-vie

КВНО-2017 · 17-21 апреля 2017 · Санкт-Петербург

Число наблюдавшихся более 250 раз источников в представленных каталогах

	All	delays > 250
aus-sx-160901.cat	3966	567
gfz-sx-160902.cat	747	317
gsf-k-160901.cat	551	188
gsf-sx-160830.cat	4131	804
iaa-sx-161013-a.cat	3610	701
opa-sx-160901.cat	4108	804
vie-sx-160908.cat	4124	793
usn-sx-160922.cat	4130	802
ICRF2.cat	4299	598

Таблица: Similar elements

	aus	gfz	gsf	iaa	ора	vie	usn	ICRF2
aus		300	560	545	559	559	524	469
gfz	300		308	309	307	308	286	285
gsf	560	308		697	803	791	740	541
iaa	545	309	697		696	694	643	533
ора	559	307	803	696		790	740	540
vie	559	308	791	694	790		730	541
usn	524	286	740	643	740	730		541
ICRF2	469	285	541	533	540	541	541	

Средние разности в прямом восхождении $\Delta \alpha \cos \delta$, μas

	aus	gfz	gsf-k	gsf-sx	iaa	ICRF2	ора	usn	vie
aus		2	-5	5	1	2	7	5	22
gfz	2		-8	1	-4	-3	3	0	18
gsf-k	-5	-8		-15	-15	-20	-10	-11	1
gsf-sx	5	1	-15		-3	-5	2	-0	16
iaa	1	-4	-15	-3		-2	5	3	20
ICRF2	2	-3	-20	-5	-2		5	3	22
opa	7	3	-10	2	5	5		-2	15
usn	5	0	-11	-0	3	3	-2		16
vie	22	18	1	16	20	22	15	16	

Средние разности по склонению $\overline{\Delta\delta}$, μas

	aus	gfz	gsf-k	gsf-sx	iaa	ICRF2	ора	usn	vie
aus		-2	30	-45	18	25	-38	-37	-71
qfz	-2		34	-46	19	13	-39	-39	-72
gsf-k	30	34		-49	5	13	-34	-36	-64
gsf-sx	-45	-46	-49		63	64	6	9	-26
iaa	18	19	5	63		-2	-57	-55	-87
ICRF2	25	13	13	64	-2		-58	-54	-88
ора	-38	-39	-34	6	-57	-58		2	-32
usn	-37	-39	-36	9	-55	-54	2		-35
vie	-71	-72	-64	-26	-87	-88	-32	-35	

CKO $\Delta \alpha \cos \delta$, μas

	aus	gfz	gsf-k	gsf-sx	iaa	ICRF2	ора	usn	vie
aus		77	74	47	57	73	48	48	49
gfz	77		73	64	82	59	64	66	69
gsf-k	74	73		132	130	117	130	130	129
gsf-sx	47	64	132		47	60	19	21	37
iaa	57	82	130	47		64	47	44	46
ICRF2	73	59	117	60	64		57	57	59
opa	48	64	130	19	47	57		17	37
usn	48	66	130	21	44	57	17		37
vie	49	69	129	37	46	59	37	37	

СКО $\Delta\delta$, μas

	aus	gfz	gsf-k	gsf-sx	iaa	ICRF2	ора	usn	vie
aus		95	121	67	80	87	63	64	76
gfz	95		143	98	104	74	94	96	108
gsf-k	121	143		163	182	183	162	162	166
gsf-sx	67	98	163		60	90	31	33	63
iaa	80	104	182	60		89	61	61	60
ICRF2	87	74	183	90	89		88	86	93
ора	63	94	162	31	61	88		24	62
usn	64	96	162	33	61	86	24		66
vie	76	108	166	63	60	93	62	66	

Текущее состояние

- Подготовка окончательного каталога радиоисточников ИПА РАН
- Подготовка ПММ в обеспечении сравнительного анализа каталогов других центров
- Применение алгоритмов выбора определяющих источников к построенным каталогам
- Определение параметров галактической аберрации

Спасибо за внимание!