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It is now well known that deterministic systems can give rise to so{called

chaotic motion [13]. Sometimes, there has been the tendency to associate chaotic

motion with unstable motion. Yet many examples have been provided in the

literature of chaotic motions which seem to remain stable up to very long times

(see Benettin et al., 1985) [11].

Such behavior, detected in di�erent �elds of physics (beam{beam interaction,

asteroidal motion), is now known to be typical of a certain class of dynamical

systems.

Indeed, the representation of resonant motions given in (Benettin and

Gallavotti, 1986) in the framework of the stability result of Nekhoroshev

(Nekhoroshev, 1977) [20] shows that in quasi{integrable Hamiltonian systems

there typically exist resonant chaotic motions whose actions are bounded up to

an exponentially long time. Morbidelli and Froeschl�e (Morbidelli and Froeschl�e,

1996) [18] have shown, using a quite simple model, that the actions can remain

con�ned up to very long times despite the fact that the largest Lyapunov char-

acteristic exponent associated to the motion is quite large.

The existence of di�usive chaotic orbits has been heuristically shown in

(Chirikov, 1979) [5] as due to the overlapping of resonances. Let us remark that

such di�usion can be quite slow when the harmonics of the overlapping resonances

are small (see for example Morbidelli and Guzzo, 1997) [19]. Therefore, such a

slow di�usion is not easily recognized using even very long numerical integrations

looking at the variations of the actions. It is very di�cult to distinguish between

the two di�erent regimes with purely analytic tools although many improvements

in this direction have been recently obtained (Celletti and Chierchia, 1995, [2];

Celletti and Chierchia, 1997, [3]; Celletti et al. 2000, [4]; Locatelli and Giorgilli,

2000, [17]). Therefore, numerical tools have been developed in the last ten years
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(Laskar, 1990, Laskar et al., 1992, Lega and Froeschl�e, 1996, Contopoulos and

Voglis, 1997, Froeschl�e and Lega, 1998) [14], [15], [16], [6], [9] to investigate the

problem in an indirect way, i.e. by looking for the mathematical consequences of

the two regimes, which are di�erent from the stability of the actions.

In a previous work we have used two tools recently introduced to investigate

the transition from the Nekhoroshev to the Chirikov regime, both in Hamiltonian

systems and symplectic maps. The �rst tool, called the Fast Lyapunov Indicator

(hereafter called FLI, Froeschl�e et al., 1997; Lega and Froeschl�e, 1997) [10], [16] is

related to the computation of the tangent map for a suitable choice of an initial

tangent vector, and allows us to distinguish rapidly not only slow chaos from

ordered motion (Froeschl�e et al., 1997) but also discriminates between regular

resonant motions and tori (Froeschl�e et al., 2000; Froeschl�e and Lega, 2000; Lega

and Froeschl�e, 2001) [1], [8], [7]. Indeed, such numerical studies show that the

computation of the FLI on a grid of regularly spaced initial conditions permits

detection of the geometry of resonances with quite short numerical integrations.

Let us remark that the de�nition of the FLI is very close to that of the Finite

Time Lyapunov Exponent (see for example Tang and Boozer, 1996). These two

indicators, de�ned independently, di�er mainly in the dependence on the choice

of the initial tangent vector.

The second method, introduced in Guzzo and Benettin, 2001 [12], and called

\analytically �ltered Fourier analysis" (hereafter AFFA), is related to the rep-

resentation of the spectrum of a generic observable for systems which are in

the Nekhoroshev regime. It provides global information on the long{term sta-

bility properties of the system through computation of a few well chosen orbits.

Of course this requires less CPU time than grid{based calculations. Using both

methods we have measured an interval of transition, centerd on a given value of

the perturbation parameter �

�

, from the Nekhoroshev to the Chirikov regime for a

three degrees of freedom Hamiltonian system. The relationship between Nekhoro-

shev stability and di�usion as still to be explored numerically and this is the aim

of the present work. We know from the Nekhoroshev theorem that the e�ective

stability time is exponentially long with respect to the ratio �

�

=�. This means

that di�usion can in principle be detected if the system is close to the transition

to the Chirikov regime, i.e. if � ' �

�

. Using the FLI charts we have been able to

select a set of resonant chaotic initial conditions for some values of � lower than �

�

and to follow the motion of the corresponding orbits. We have observed di�usion

along resonant lines, for decreasing value of � up to � ' �

�

=10. The measure of the

di�usion coe�cient as a function of the perturbation parameter seems to follow

the expected exponential law.
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