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Discoveries of many new objects moving on high-eccentricity orbits in the

Solar system and beyond have highlighted the importance of modeling the long-

term evolution of such orbits. At present, symplectic integrators introduced by

Wisdom and Holman [1] and Kinoshita et al. [2] are the most popular tools for

studying dynamics of solar and extrasolar system objects. Mikkola and Tanikawa

[3] and Preto and Tremaine [4] suggested a new integrator in which the time-step

depends on the potential energy of a Hamiltonian system. In this paper we develop

these methods to handle both high-eccentricity orbits and close encounters for

the Hamiltonian of the form

H = H

0

�H

1

;

where H

0

is the Keplerian part, H

1

is the perturbation part, and H

0

� H

1

in

the absence of close encounters.

For the motion of a small body with in�nitesimal mass in the gravita-

tional �eld of the Sun and planets, H
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, and the conjugate canonical variables q
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are Cartesian coordinates and their time derivatives. The perturb-

ing function R depends on t through planetary coordinates. We extend the phase

space, adding the canonical variables q

4

= t and p

4

= �H [5]. Then there exists

a transformation to the new independent variable s and the new Hamiltonian
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� = 0 along the trajectory, B
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are small constants, and

ds =

K
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r

dt =
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)dt:

Both �

0

and �

1

are integrable. Therefore, the generalized leapfrog scheme[1] can

be applied to the Hamiltonian �. The step over s is constant at the symplectic

integration. Thus the time{step depends on the perturbing function R and the

distance r. The practical choice of B

0

; B

1

; B

2

is considered for both barycentric

and heliocentric coordinate systems in details. Although numerical tests have

shown that the method is the most stable atB

0

= 0 for su�ciently small steps, the

parameter B

0

= 0 can be used to keep the time{step within a small fraction of the

shortest period in the dynamical system. In particular, the algorithm described

above has been applied to integrations of trans-Neptunian objects for the age of

the Solar system.

The same principles can be implemented for the general N -body problem.

The extension of the algorithm to the Jacobi and mixed{centre coordinates [6]

has been carried out. Numerical experiments demonstrate the e�ciency of this

symplectic technique for planetary system formation problems.
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