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1. Introduction

The aim of this paper is to review the present status of relativistic celestial

mechanics in its broadest sense. Nowadays many physicists and astrophysicists do

researches in the �eld of relativistic celestial mechanics. Due to these researches

the subject �eld of celestial mechanics has been signi�cantly extended beyond the

scope of motion of the solar system bodies (weak gravitational �elds). The main

attention is focused now on investigating motion of astrophysical and cosmolog-

ical objects such as black holes, gravitational waves, neutron stars, inspiralling

compact binaries, etc. (strong gravitational �elds). This review covers four main

aspects of relativistic celestial mechanics, i.e. GRT and observations, GRT and

astrophysics, GRT and ephemeris astronomy, and GRT and classical celestial

mechanics problems.

2. GRT and observations

The detailed analysis of the current status of comparison of general relativity

(weak �eld and strong �eld e�ects) with observations is given in very compact

and elucidative form by Sch�afer (2000). In spite of the present agreement between

experiment and theory new theoretical developments in astrophysics and cosmol-

ogy provide new motivations for pursuing the experimental tests of GRT. From

this point of view the confrontation between GRT and observations is analysed

by Damour (see relevant papers in http://arXiv.org, gr-qc series). restrict here

by exposing the main tests of GRT as described in (Sch�afer, 2000 with references

therein).

GRT is based on the Equivalence Principle. A distinction is made between

the Weak Equivalence Principle (WEP), Einstein Equivalence Principle (EEP)

and Strong Equivalence Principle (SEP). WEP, i.e. the identity of inertial and

gravitational mass, is checked now experimentally within a precision of 1�10

�12

.
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EEP, i.e. the local equivalence of gravitational and inertial �elds involving the

universality of gravitational redshift, is veri�ed with a precision of 2�10

�4

. SEP,

i.e. the extension of EEP for self{gravitating test systems, is characterized by

Nordtvedt parameter �

G

= 4���3, � and  being the main PPN (Parametrized

Post{Newtonian) parameters equal to 1 in GRT. The present SEP tests result

in �

G

= �0:0007 � 0:0010. On the other hand, the LLR and VLBI deection

measurements give  = 0:9996� 0:0017; � = 0:9997� 0:0005.

The LLR measurements enable also to check the e�ect of the geodetic pre-

cession. The presently highest relative precision amounts to 5 � 10

�3

. Radar

measurements to planets and satellites result in an upper bound of the possible

variation of the Newtonian gravitational constant of j

_

G=Gj < 0:6 � 10

�11

yr

�1

.

Quite recently, the precession of the orbital planes of the Earth's arti�cial satel-

lites caused by the Earth's rotation (Lense{Thirring precession) was veri�ed with

a precision about 20%.

All these e�ects are characteristic for the weak gravitational �elds. The most

important GRT test for strong gravitational �elds is related with binary pulsar

motion. Two close binary radio pulsars with neutron{star companions are used

now for testing strong{�eld e�ects of GRT: PSR B1913+16 and PSR B1534+12.

The consistent solution for masses and orbital elements of PSR B1913+16 proves

the correctness of GRT e�ects including the existence of gravitational waves. The

precision of this test amounts presently 0.35%. In the nearest future the analysis

of observations of PSR B1534+12 may be even more important permitting to

measure the corresponding geodetic precession and some strong{�eld e�ects of

alternative gravitation theories. The planned future space missions and ground

observatories designed for direct investigation of gravitational waves will result

in further tests for black holes and the big band.

3. GRT and astrophysics

Practically until two last decades of the XXth century all problems of rel-

ativistic celestial mechanics have been treated in the �rst post{Newtonian ap-

proximation (1PNA), i.e. within c

�2

accuracy with respect to the Newtonian

terms. In this respect relativistic celestial mechanics of that time was simpler

mathematically than high{accuracy Newtonian celestial mechanics with its sub-

sequent approximations far beyond the �rst order. The situation changed with

the discovery of binary pulsar PSR B1913+16. To study its motion in taking into

account gravitational radiation it is necessary to derive and to solve the equations

of motion in 2.5PNA, i.e. within c

�5

accuracy. It turns out that in 2PNA (c

�4

accuracy) the N body problem does not di�er qualitively from the corresponding

Newtonian problem (conservative dynamical system). The qualitative di�erence

reveals in 2.5PNA due to the loss of the energy of the system by gravitational

radiation. The system becomes non{conservative and irreversible (in time). The
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consistent solution for the binary pulsar problem in 2.5PNA obtained by celes-

tial mechanics techniques proved implicitly the existence of gravitational waves.

To get insight into further evolution of the binary when the distance between

bodies becomes less than the radius of the innermost stable circular orbit one

needs to proceed further approximations with respect to the GRT small parame-

ters. Present investigations (Jaranowski and Sch�afer, 1997, 1998; Damour et al.,

2000a,b, 2001) deal with 3PNA and even 3.5PNA ( c

�6

and c

�7

accuracy, respec-

tively). Such higher{order approximations are necessary for understanding the

processes of coalescing inspiralling galaxies and gravitational wave emission. The

analytical techniques applied in these investigations extend the arsenal of existing

methods of celestial mechanics (as an e�ective one{body approach to two{body

dynamics developed by Buonanno and Damour, 1999).

On the other hand, these techniques are complemented by numerical relativity

methods for the regions deeply inside the innermost stable circular orbit.

4. GRT and ephemeris astronomy

First GRT{based IAU resolutions on reference systems and time scales were

adopted by the IAU in 1991. This event may be regarded as recognition of rel-

ativistic character of modern ephemeris astronomy both with respect to its the-

oretical accuracy and observational precision. The latest IAU resolutions were

adopted in 2000 (IAU, 2001). Much remains to be done for realization of these

resolutions (Brumberg and Groten, 2001). IAU resolutions demand to consider

two principal astronomical reference systems ICRS and ITRS as relativistic four{

dimensional systems with TCB and TCG, respectively, as their time scales. In

practice, these systems are often used as three{dimensional Newtonian systems

in combination to TDB and TT, respectively. This fact causes a lot of confusion.

IAU(2000) resolutions involve one more system, GCRS, to be served as an

intermediary between ICRS and ITRS. To avoid any GRT ambiguities in inter-

preting ephemeris astronomy concepts one needs even more reference systems at

the barycentric and geocentric level.

Accurate analytical expression for the di�erence TDB{TT (in the geocentre)

has been given in (Fairhead and Bretagnon, 1990 ; see also Irwin and Fukushima,

1999). Guinot (2000) pointed out the necessity to take into account the constant

value of the mixed and trigonometric terms in this di�erence for the rigorous

ful�llment of the IAU resolutions (both the time scales di�erence and the geodetic

rotation vector are determined by di�erential equations and one should specify

initial conditions in solving these equations).

New advances in solving the equations of light propagation are made in

(Kopeikin et al.,1999) and (Blanchet et al., 2001).

The most accurate algorithms of relativistic reduction of astronomical obser-

vations are proposed by Klioner (2001) for space astrometry, by Kopeikin and
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Ozernoy (1999) for binary star observations and by Klioner (1991) for VLBI

observations.

Numerical planetary theories have been analysed in (Pitjeva, 2001 and refer-

ences therein).

5. GRT and classical celestial mechanics problems

GRT planetary equations used now in ephemeris astronomy represent the

well{known EIH (Einstein{Infeld{Ho�man) equations for the point masses. Vari-

ous generalizations of these equations for the rotating extended masses (including

the equations for rotational motion) were proposed in the second half of the last

century but the physical structure of the bodies was often considered there rather

formally (not violating mathematical correctness of these equations). Only recent-

ly the physically reliable equations for the binaries with consideration of spin and

quadrupole moments were derived in (Xu et al., 1997). Various ways to derive

the explicit rotational equations of motion of celestial bodies are discussed in

(Klioner and So�el, 1998, 1999).

Earth's satellite equations were analysed in (Damour and Esposito{Far�ese,

1994) with respect to the major GRT e�ects. Klioner (2001) gave these equations

in explicit form with accuracy more than enough for present practical purposes.

All these equations intended to study the motion of the solar system bodies

are derived in 1PNA. Using the 2.5PNA equations for binary pulsar it is possi-

ble to study the motion of a test particle in the binary pulsar gravitational �eld

(Brumberg, 2002). As a simple example of a non{conservative and irreversible (in

time) type of motion one may consider the relativistic restricted quasi{circular

three{body problem with gravitational radiation taken into account. In the sim-

plest approximation the equations of motion of such problem have formally the

Newtonian form with coordinates of the binary (K = 1; 2, i = 1; 2)
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N; A; M being mean motion, semi{major axis and sum of mass of the binary,

respectively. The simplest quasi{circular plane solution for a test particle ar large

distance from the binary reads
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n; a being unperturbed values for the mean motion and semi{major axis of a test

particle.
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6. Conclusion

It is of interest to see the list of the most important unsolved problems in

astrophysics given by Wesson (2001). The list contains 20 fundamental problems

of modern astrophysics. It seems that at least a quarter of them should be treated

by methods of relativistic celestial mechanics underlying its role in setting closer

relationship between astrophysics and celestial mechanics.
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