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An analytical solution of Lagrange planetary

equations valid also for very low eccentricities
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We give an analytical solution of the Lagrange planetary equations expressed

in a set of non singular elements for eccentricity: the semi-major axis a, the

inclination i, the ascending node 
, � = !+M where ! denotes the argument of

perigee and M the mean anomaly, and the elements C = e cos! and S = e sin!

where e denotes the eccentricity.

The perturbations which can be computed are due to the gravity �eld of a

planet, or to the in
uence of a third body, through an internal or an external

potential. These potentials are expressed with respect to the former set of ele-

ments, and in particular use a formulation of the Kaula functions of eccentricity

G (Wytrzyszczak, 1986) and H with respect to C and S.

The main study deals with the integration of the di�erential system veri�ed

by C and S, since the metric element e and the angular element ! are mixed. The

di�erential system is divided into two parts: a �rst one which can be analytically

integrated in an exact way, the second part being seen as a perturbation of the

�rst one. More precisely, the �rst part of the differential system veri�ed by C and

S corresponds to a harmonic oscillator: our method takes into account, in a �rst

step, long period variations of 4 elements: C, 
, S, and �.

It is therefore a generalization of the Kaula method(Kaula, 1966) expressed in

`classical' orbital elements, in which only the secular variations of the angles 
,

!, M are computed during a �rst step.

Moreover, our method enlightens the behavior of the argument of perigee !

with time. Like (Cook, 1966), we show that its variations are not really linear

with time, in particular for low eccentricities. We therefore use another angle,

called �, which is well de�ned even for eccentricities equal to zero. We use this

angle � to integrate the long as well as the short period variations of C and S,

and as a consequence of all the other elements.

Here, we show why and how we have divided the di�erential system veri�ed

by a, C, i, 
, S and � in two components. The �rst part gives a long period

53



solution a

1

, C

1

, i

1

, 


1

, S

1

and �

1

; the second part gives corrections �a, �C, �i,

�
, �S and ��. There results: a(t) = a

1

(t) +�a(t), C(t) = C

1

(t) +�C(t), ... .

We also show the way used to express �a, �C, �i, �S, ... in a synthetic

formulation.

Like the method built by Kaula, our method is based on a development in

powers of the eccentricity. But, there is no supplementary hypothesis induced by

the expression of our theory in non singular elements for eccentricity: it can be

used for bodies { arti�cial satellites or planets { with an eccentricity greater than

or equal to zero.

Finally, we compare three methods in di�erent dynamic con�gurations: this

method, expressed in non singular elements for eccentricity (with an integration

hypothesis based on �), the method of Kaula, expressed in classical orbital ele-

ments (with an integration hypothesis based on !), and the numerical integration.

Tests show that, compared to the method of Kaula, our method is more accurate

as soon as the eccentricity of the studied body is smaller than a few 10

�2

.
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